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Hypothesis Tests on Mixture Model
Components with Applications

in Ecology and Agriculture

Ling XU, Timothy HANSON, Edward J. BEDRICK, and Carla RESTREPO

Multiple comparisons are widely used to compare gross features of distributions
across populations. However, often a scientific hypothesis is more easily couched in
terms of more focused null and alternative statistical hypotheses. For example, among
distributions exhibiting clusters of continuous measurements across strata, are there
clusters of measurements similar in terms of location, spread, or weight? We propose
testing such hypotheses using a sequence of nested finite mixture models. Reasonable,
data-driven priors are suggested based on estimates of the sample spreads and mid-
points. Formal hypothesis testing is carried out through the computation of Bayes fac-
tors. The method is illustrated on Holling’s (Ecological Monographs 62:447–502, 1992)
forest and prairie bird body mass data, and data on the time-to-abortion in dairy cows.
Supplemental simulations are available online.

Key Words: Finite mixture model; Hierarchical mixture of experts; Multiple compar-
isons; Textural-discontinuity hypothesis.

1. INTRODUCTION

This article develops Bayesian hypothesis tests for comparing aspects of finite mixture
models across populations. We motivate our proposed sequence of nested hypothesis tests
with two examples from ecology and agriculture.

Body size is one of the most important attributes of living organisms (McMahon and
Bonner 1983). The enormous variability and close relationship of body mass with a di-
verse array of physiological, morphological, and life-history attributes (e.g., Peters 1983;
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Schmidt-Nielsen 1984) makes it a unique currency to address fundamental questions in
ecology and evolution. Some of these questions target understanding patterns and processes
pertaining to particular levels of biological organization whereas others target particular
spatial and temporal scales (Halloway 2007; Hunt 2007). Irrespective of the question and
approach, a key unresolved issue is the underlying form of the body size distribution. Tradi-
tionally, the body size distribution is assumed to be continuous and unimodal (Hutchinson
and MacArthur 1959; Halloway 2007). Others suggest that it is discontinuous or multi-
modal (Wilson 1953; Holling 1992). These two views lead to contrasting hypotheses about
the processes underlying the observed variability in body size and its relationship with
other attributes. For example, continuous unimodal distributions may imply the existence
of a single optimal body size (Stanley 1973; Brown, Marquet, and Taper 1993) whereas
discontinuous or multimodal distributions may imply the existence of thresholds, forbid-
den body sizes, and multiple body size optima (Holling 1992; Allen, Forys, and Holling
1999). A second issue to consider is the availability of statistical methods that cannot only
help reveal multimodal distributions in body size but also interesting differences among
groups or relationships with other variables, and therefore provide explanations for the
observed patterns. For example, Holling (1992) compares the distribution of body sizes of
birds and mammals living in contrasting habitats and finds that they not only cluster around
a limited set of body sizes, but that they also share many similarities. This suggests a crit-
ical role of landscapes in organizing animal assemblages and the possibility that these
assemblages are resilient to change (textural-discontinuity hypothesis) (Holling 1992;
Restrepo, Renjifo, and Marples 1997).

Figure 1 depicts histograms of the log body masses of boreal (northern) prairie and for-
est birds with estimated densities based on finite mixture models (see Section 5). For now,
note that the distributions appear to be comprised of two or three moderately homogeneous,
bell-shaped components.

The timing and causation of spontaneous abortion in dairy cows is of marked interest to
herd owners and dairy managers. If the causation of the event is rooted in a pathogen intro-
duced at a specific point in the fetal life-cycle, then the timing of abortion will tend to be
similar across cows. This would necessarily invalidate the proportional hazards (PH) and
accelerated failure time models (AFT), both of which have been suggested for relating the
timing of abortion to herd characteristics and maternal risk factors such as parity and age
(Thurmond et al. 2005; Hanson et al. 2003). The effect of covariates in the AFT model ef-
fectively warps time, i.e., stretches or contracts time, relative to baseline or other covariates.
In contrast, the hierarchical mixture of experts (HME) model (Jordan and Jacobs 1994;
Bishop and Svensén 2003) does not warp time, but rather models the probability that an
event time arises from a Gaussian component with fixed mean and precision. HME mod-
els are simply finite mixture models where the probability of latent group, or component,
membership is modeled as a function of risk factors.

Consider data on the time to spontaneous abortion among n = 2302 dairy cattle from
six herds in the San Joaquin Valley of California (Karuppanan, Thurmond, and Gardner
1997). Figure 2 shows histograms and density estimates based on finite normal mixture
models for each herd. The distributions of the time to abortion appear to be comprised
of three moderately homogeneous components, but in different proportions across herds.
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Figure 1. Histograms with M3 (dotted) and M2 (solid) density estimates for Holling’s (1992) boreal bird data
(log body mass in grams).

A visual assessment suggests that the stages during which abortion occurs are fixed across
herds, but that the relative proportions falling into each stage varies across herds.

In this paper, a generalization of the one-way ANOVA model is developed for non-
normal data, but where certain characteristics of the population densities are hypothesized
to remain constant across groups. In the standard ANOVA, t groups are compared assuming
the model

yi1, . . . , yini

iid∼ N
(
μi, τ

−1),

where ni is the sample size from the ith population (i = 1, . . . , t). The hypothesis H0 :
μ1 = · · · = μt holds if and only if all observations {yij } arise from the same distribution.
The standard alternative hypothesis implies that population densities differ only by loca-
tion.

Inferences in the one-way ANOVA model depend crucially on the normality assump-
tion. In many settings, the data distributions have multiple modes and skewness, and no
obvious transformation to approximate normality can be found. A natural generalization
of the simple ANOVA model that accommodates these features is to model densities as
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Figure 2. Histograms and M3 density estimates for time-to-abortion data (days).

finite mixtures of homogeneous “clusters” or components:

yi1, . . . , yini

iid∼
K∑

k=1

ωikN
(
μik, τ

−1
ik

)
.

Relaxing the normality assumption by modeling each population density as a finite mixture
of Gaussian components not only allows greater flexibility in testing whether the data arise
from the same population, but further facilitates finding commonality less extreme than
the hypothesis that all populations have the same density. For example, the hypothesis that
there are K identical “centers of attraction” in each population, but that the distributions
about these centers are possibly more dispersed or occur with different relative frequencies
across populations can be formulated in the mixture model context by H0 : μ1k = μ2k =
· · · = μtk , for k = 1, . . . ,K . These types of hypotheses are readily tested in the Bayesian
framework through the use of Bayes factors, which indicate how well one model supports
the observed data relative to another. Bayes factors, which require proper priors for each
competing model, are discussed in detail in Section 4.

 Author's personal copy 



312 L. XU ET AL.

Throughout the article, the number of components K is assumed fixed and known. Al-
though this will rarely be the case, many methods exist for estimating K , for example,
the Bayesian information criterion (BIC) (Roeder and Wasserman 1997) and the weighted
gap statistic (Yan and Ye 2007). For the boreal bird data in Section 5, we find the poste-
rior mode of K given default prior specifications using the reversible jump approach of
Richardson and Green (1997), the Dirichlet process mixture approach (Escobar and West
1995), and the BIC approximation of Roeder and Wasserman (1997). These approaches
often agree with each other and with what one might decide based on simply looking at
histograms.

The remainder of the article is organized as follows. Section 2 defines the population
model and discusses a data-driven proper prior specification. In Section 3, four nested mod-
els for testing hypotheses of interest are presented. Full conditional distributions for blocks
of means, precisions and weights are given to facilitate the implementation of a Gibbs sam-
pler. Section 4 outlines Chib’s (1995) algorithm to compute Bayes factors for comparing
the four models. Section 5 analyzes the boreal bird and time-to-abortion data. Comparisons
with alternative model selection methods are also provided. Section 6 presents conclusions
and discussion.

2. THE POPULATION MODEL AND PRIOR

Methods for computing Bayes factors using priors that are proper, but as vague as pos-
sible, have been proposed, most notably fractional Bayes factors (O’Hagan 1995) and in-
trinsic Bayes factors (Berger and Pericchi 1996). Both of these approaches use training
sets of data to construct proper, but weakly informative priors, and are not considered here.
Instead, we follow the development in Richardson and Green (1997) and consider a proper,
but vague prior specification that takes into account the sample range and the midpoint of
the data.

Suppose observations from each population are independent and have a distribution that
is a finite mixture of K normal components. Our basic mixture model is:

yi1, yi2, . . . , yini

iid∼
K∑

k=1

ωik�
(·|μik, τ

−1
ik

)
, (1)

for populations i = 1, . . . , t , where K is known and {ωik} are unknown non-negative
weights such that

∑K
k=1 ωik = 1. Here, �(·|μ,τ−1) is the cdf of a normal distribution

with mean μ and precision τ . Let φ(·|μ,τ−1) be the corresponding normal pdf.
Typically, there is little to no prior information on the component weights.

A Dirichlet(δ1K) distribution, with δ small, provides a flexible, conjugate choice. As-
suming δ = 1, we have

(ωi1, . . . ,ωiK)′ ∼ Dirichlet(1K).

The prior on the component means is given by

μi1, . . . ,μiK |ξi, κi ∼ N
(
ξi, κ

−1
i

)
, (2)
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subject to the constraint μi1 < μi2 < · · · < μiK for identifiability and enhanced inter-
pretability. Choosing ξi to be the midpoint between the sample extremes, ξi = (yi(1) +
yi(ni ))/2 and κi = 1/R2

i , where Ri = yi(ni ) − yi(1) is the sample range, centers the prior
in the middle of the data and keeps the prior flat over an interval of variation of the
data. Increasing κi serves to shrink means towards ξi . Note that the prior density for
μi = (μi1, . . . ,μiK) is p(μi ) = K!I {μi1 < μi2 < · · · < μiK}∏K

k=1 φ(μik|ξi, κ
−1
i ).

Chib (1995) does not enforce the order constraint on the means in a simpler normal
mixture model. Neal (1999) shows that this impacts the accuracy of Bayes factor compu-
tations in modest Gibbs sampling runs. For the models we consider, the constraint is easy
to incorporate into the initial and reduced Gibbs samplers used in Chib’s algorithm. Fur-
thermore, ordered means avoids the “label switching” problem and ensures interpretable
models. Recently, Lee et al. (2008) suggest combining Chib’s algorithm with the pivotal
reordering method to compute Bayes factors in finite mixture models. We prefer imposing
the constraint a priori rather than using this post-hoc approach.

A sensible default prior specification on the component precisions is useful in the ab-
sence of real prior information. To this end, Richardson and Green (1997) develop a hierar-
chical data-driven prior for {τik} that reflects the prior belief that the component precisions
should be similar, but their absolute size should be left arbitrary. This prior gives results
that are pleasing to the eye for a variety of data sets, and extends to a model in which the
number of components K is an unknown parameter. Their prior is given by

τi1, . . . , τiK |βi
iid∼ 
(α,βi), βi ∼ 
(g,hi), (3)

where α, g, and hi are specified. This hierarchical prior induces the simple prior with pdf

τij ∼ pi(τ ) = 
(α + g)h
g
i τ

α−1


(α)
(g)(τ + hi)α+g
. (4)

Richardson and Green (1997) recommend α = 2, g = 0.2, and hi = 10/R2
i , which gives

τij ∼ pi(τ ) = 0.24h0.2
i τ

(τ + hi)2.2
. (5)

A simple non-hierarchical 
(α,β) prior on the precisions facilitates the computationally
intensive approach to estimating Bayes factors in Section 4. Diebolt and Robert (1994),
Carlin and Chib (1995), Chib (1995), Bishop and Svensén (2003) also consider a gamma
prior. A natural approach would be to specify α and β by matching the first moments in
(5) with those of 
(α,β). Unfortunately, the moments of (5) do not exist. In fact, this prior
is heavy-tailed, placing significant mass on very small values of σij = τ

−1/2
ij :

P(σij ≤ 0.00001981Ri) ≈ 0.025, P (σij ≥ 0.387Ri) ≈ 0.025

Alternatively, a useful simplification of the hierarchical prior (3) is obtained by replac-
ing βi by its expectation under βi ∼ 
(g,hi), βi = g/hi = R2

i /50, giving the prior

τi1, . . . , τiK
iid∼ 


(
2,

R2
i

50

)
. (6)
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Here E(τij ) = α/βi = 100/R2
i and so a “typical” value of σij is Ri/10. The mode of τij

is (α − 1)/βi = 50/R2
i implying that the mode of σij is about 0.14Ri . By comparison,

the mode of the induced prior (5) is hi/1.20 = 8.33/R2
i implying that the mode of σij is

approximately 0.35Ri . Under (6),

P(σij ≤ 0.060Ri) ≈ 0.025, P (σij ≥ 0.287Ri) ≈ 0.025,

so this prior does not allow as extreme values of σij as prior (3) and places approximately
95% probability on values of σij within about Ri/4.

To allow more extreme component variation we consider an alternative simple prior
with greater spread than (6). The prior

τi1, . . . , τiK
iid∼ 


(
1

2
,

R2
i

3000

)
(7)

yields E(τij ) = 1500/R2
i and a typical value of σij of about 0.026Ri . Thus, a typical

Gaussian component “length” is about 0.1Ri . This prior places more mass on both smaller
and larger σij than the gamma prior described above:

P(σij ≤ 0.0115Ri) ≈ 0.025, P (σij ≥ 0.824Ri) ≈ 0.025.

Note that E(σij ) = ∞ for this prior.
Priors (5), (6) and (7) can be directly compared because all three are scale families in

R2
i . Figure 3 shows the three priors when Ri = 1. Priors (5) and (6) prohibit very small

precisions and thus very large standard deviations. Prior (7) allows for much larger values
of σij . The induced prior (5) allows for absurdly small values of σij , or density spikes at
zero.

Richardson and Green (1997) also consider simple gamma priors of this type but rec-
ommend the full hierarchical prior (3) instead. They also discuss sensitivity of the posterior
means of the τij as

√
βi/α is varied, and note that this sensitivity increases with the num-

ber of components K . This, in part, may simply be due to the fact that if a small number of
components adequately describes a data set, additional components may only be weakly
identified and thus posterior inferences will be sensitive to the prior specification. To avoid
this we pick K to be as small as is plausible for a given data set.

When the number of components K is fixed at a small number, say K = 2,3 or 4, the
ordered component locations, weights, and precisions should be well-identified by most
data and we expect the two simple priors to give similar results. We find this to be the
case in the simulations and data analyses of Section 4. When K is large, or random as in
Richardson and Green (1997), we expect different priors to give potentially very different
results.

In summary, the most general prior specification for population i is

μi1, . . . ,μiK
iid∼ N(ξi, κ

−1
i ) subject to μi1 < μi2 < · · · < μiK,

τi1, . . . , τiK
iid∼ 
(α,βi),

(ωi1, . . . ,ωiK)′ ∼ Dirichlet(δ, δ, . . . , δ).
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Figure 3. Precision prior densities: (solid) induced prior of Richardson and Green; (short dashed) 
(2, 1
50 );

(long dashed) 
( 1
2 , 1

3000 ).

Prior parameter values are fixed at δ = 1, κi = R−2
i , and ξi = yi(1) + Ri/2 where Ri is the

ith sample range. Two precision priors are considered: (α,βi) = (2,R2
i /50) and (α,βi) =

(1/2,R2
i /3000).

To facilitate the implementation of a Gibbs sampler (Gelfand and Smith 1990) to fit
the mixture model for a given population i, Diebolt and Robert (1994) augment the model
parameters with latent allocation variables zij , one for each yij , that indicate which com-
ponent k ∈ {1, . . . ,K} generated the observation yij . That is,

zij = k ⇔ yij ∼ �
(·|μik, τ

−1
ik

)
, j = 1, . . . , ni .

Note then P(zij = k) = ωik for k = 1, . . . ,K .

3. A NESTED SEQUENCE OF MODELS

3.1. MODEL M1: THE FULL MODEL

The full model M1 assumes that each of the t populations has a distinct normal mixture
of K components. For the ith population,

yi1, yi2, . . . , yini

iid∼
K∑

k=1

ωik�
(·|μik, τ

−1
ik

)
, i = 1, . . . , t.

The distributions of the allocation variables {zij } given (ωi1, . . . ,ωiK)′ and priors on the
remaining variables were specified in Section 2. Let nik be the number of observations
allocated to the kth component, nik = ∑ni

j=1 I {zij = k}. The full conditional distributions
for the component precisions and for the component means are recognized as

τik| else ∼ 


(
nik

2
+ α,βi + 1

2

∑

j :zij =k

(yij − μik)
2
)

(8)
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and

μik| else ∼ N

(
τik

∑
j :zij =k yij + κiξi

τiknik + κi

,
1

τiknik + κi

)
I(μi,k−1,μi,k+1), (9)

where N(μ,σ 2)I(a,b) denotes a N(μ,σ 2) distribution truncated to (a, b). Here μi0 = −∞
and μi,K+1 = ∞. The full conditional distribution on the weights is Dirichlet:

(ωi1, . . . ,ωiK)′| else ∼ Dirichlet(δ + ni1, . . . , δ + niK). (10)

Finally, the conditional distributions of the allocation variables are independent with

P(zij = k| else) ∝ ωikτ
1
2
ik exp

[
−1

2
τik(yij − μik)

2
]
.

3.2. MODEL M2: IDENTICAL MEANS

Model M2 restricts M1 so that the K component means are identical across populations:

μ1k = μ2k = · · · = μtk ≡ μk, k = 1, . . . ,K.

Model M2 is nested within M1 so the prior on the component means {μk} is necessarily
different from the prior discussed in Section 2, but all other priors are as before. We specify

μ1, . . . ,μK
iid∼ N

(
ξs, κ

−1
s

)
,

where κs = min{κ1, κ2, . . . , κt }, κi = R−2
i , and ξs = ∑t

i=1 ξi/t , the average midpoint of
the t sample ranges. Thus, the prior is centered at the midpoint of the combined samples
and covers the range of each sample.

The component means are identical across populations in this model, thus the full con-
ditional densities for the means depend on all t samples. The full conditional distributions
for these parameters are recognized as

μk| else ∼ N

(∑t
i=1(τik

∑
j :zij =k yij ) + κsξs

κs + ∑t
i=1 τiknik

,
1

κs + ∑t
i=1 τiknik

)
I(μk−1,μk+1), (11)

where μ0 = −∞ and μK+1 = ∞. The full conditional distributions for {τik}, {ωik}
and {zij } are the same as in model M1, but with μk replacing μik , where i = 1, . . . , t ,
k = 1, . . . ,K .

3.3. MODEL M3: IDENTICAL MEANS AND VARIANCES

Model M3 assumes that the component means and precisions are identical across pop-
ulations:

μ1k = μ2k = · · · = μtk ≡ μk and τ1k = τ2k = · · · = τtk ≡ τk, k = 1, . . . ,K.

This model, nested within both M2 and M1, assumes that populations are comprised of the
same K components, but in different proportions. The prior on the component precisions
{τk} is necessarily different from the precision priors discussed in Section 2. Here we use

τ1, . . . , τK
iid∼ 
(α,βs),

 Author's personal copy 



HYPOTHESIS TESTS ON MIXTURE MODEL COMPONENTS 317

where βs = ∑t
i=1 βi/t , the mean of the scale parameters under models M1 and M2. Recall

βi = R2
i /50 and βi = R2

i /3000, thus βs depends on the range of each sample. Under model
M3, the sample ranges should not vary significantly; therefore, βs should be close to all
{βi} and work well here.

The full conditional distributions for the component precisions are recognized as

τk| else ∼ 


(

α + 1

2

t∑

i=1

nik, βs + 1

2

t∑

i=1

∑

j :zij =k

(yij − μk)
2

)

, (12)

which depends on the entire data set. The full conditional distributions for {μk}, {ωik}
and {zij } are the same as in model M2, but with τk replacing τik , where i = 1, . . . , t ,
k = 1, . . . ,K .

3.4. MODEL M4: IDENTICAL DISTRIBUTIONS

The simplest model, M4, assumes data from all populations arise from the same distri-

bution yij
iid∼ ∑K

k=1 ωk�(·|μk, τ
−1
k ). The means, precisions, and weights of the K Gaussian

components are the same across populations. Compared to Model M3, this model has the
further restriction:

ω1k = ω2k = · · · = ωtk ≡ ωk, k = 1, . . . ,K,

so M4 is nested within M1, M2 and M3. The prior on weights must be adjusted accordingly.
Here we choose

ω1, . . . ,ωK ∼ Dirichlet(1K).

The full conditional distribution on the weights is

(ω1,ω2, . . . ,ωk)
′| else ∼ Dirichlet

(

1 +
t∑

i=1

ni1,1 +
t∑

i=1

ni2, . . . ,1 +
t∑

i=1

niK

)

. (13)

The full conditional distributions for {μk}, {τk} and {zij } are the same as in model M3, but
replacing ωik with ωk , where i = 1, . . . , t , k = 1, . . . ,K .

4. HYPOTHESIS TESTS ON MIXTURE COMPONENTS

Kadane and Lazar (2004) review a variety of criteria for model selection. We will con-
sider Bayes factors. Han and Carlin (2001) review several methods that can be used to
calculate Bayes factors, including methods due to Chib (1995), Carlin and Chib (1995),
and Green (1995). They recommend Chib’s approach. Of the methods we tried, including
reversible jump, we found Chib’s approach to have the best stability, reasonable computa-
tion cost, and moderate ease of implementation. Song and Lee (2002) give an alternative
method for finite mixture models based on path sampling that could possibly be gener-
alized to the models considered here. See also Steele, Raftery, and Emond (2006) for an
importance sampling approach.
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For the comparison of two models Mi and Mj on data y, the Bayes factor is

Bij = pi(y)

pj (y)

where

pm(y) =
∫

pm(y|θm)πm(θm)dθm

is the marginal likelihood of the data under model Mm. Here pm(y|θm) is the data model
likelihood depending on parameters θm and πm(θm) is the prior. The Bayes factor Bij is
the weight of evidence in favor of model Mi relative to Mj .

Unlike p-values, Bayes factors can support a model (or null hypothesis) as well as
provide evidence against a model or null hypothesis. We adopt Kass and Raftery’s (1995)
guidelines for interpreting Bij . They suggest that a Bayes factor of 1 to 3 is “not worth
more than a bare mention,” 3 to 20 is “positive,” 20 to 150 is “strong,” and greater than 150
is “very strong.” Jeffreys (1961) provides a similar scale.

We consider a nested series of hypothesis tests that start with the most general model,
M1, and lead to models M2, M3, and M4, respectively:

1. (Model M1) H1 : no constraint on model parameters.

2. (Model M2) H2 : μ1k = μ2k = · · · = μtk for k = 1, . . . ,K .

3. (Model M3) H3 : H2 and τ1k = τ2k = · · · = τtk for k = 1, . . . ,K .

4. (Model M4) H4 : H3 and ω1k = ω2k = · · · = ωtk for k = 1, . . . ,K .

In subsequent analyses, we will typically select a best model, corresponding to the model
with the maximum estimated marginal probability pm(y). This model has a Bayes factor
greater than unity when compared to every other model. However, the data may not have
strong evidence in favor of this model according to Kass and Raftery’s guideline.

Chib’s (1995) method is a simple approach for computing the marginal probability
pm(y) from Gibbs sampler output. For ease of exposition, we drop the model subscript
m. For any θ∗, Bayes’ rule on the logarithmic scale gives

logp(y) = logp(y|θ∗) + logπ(θ∗) − logπ(θ∗|y). (14)

Chib suggests choosing θ∗ to be a point with high posterior density, such as an estimate
of the posterior mean or mode, to maximize computation accuracy. The first two terms of
(14) are easy to compute, but the third term requires effort. Chib suggests decomposing the
parameter vector into, say, j blocks of similar parameters θ∗ = (θ∗

1, . . . , θ
∗
j ) and running a

series of j Gibbs samplers as briefly outlined below.
Each of models M1, M2, M3, and M4 has blocks of location, scale, and weight param-

eters, say (μ,τ ,ω). For any of the models let (μ∗,τ ∗,ω∗) be a point of relatively high
posterior mass, for example, the posterior mean. For each model, our implementation of
Chib’s (1995) algorithm decomposes the ordinate as

π(μ∗,τ ∗,ω∗|y) = p(μ∗|y)p(τ ∗|μ∗,y)p(ω∗|μ∗,τ ∗,y).
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The ordinate p(μ∗|y) is obtained via the ‘Rao–Blackwellized’ estimator suggested by
Gelfand and Smith (1990). This is simply the product of Gaussian densities (9) evalu-
ated at μ∗ for M1, or (11) for M2, M3, or M4, averaged over MCMC iterates of an initial
run of the Gibbs sampler. The densities are multiplied by either (K!)t or K!, respectively
stemming from the order constraint. The ordinate p(τ ∗|μ∗,y) is obtained from running
a second, “reduced” Gibbs sampler conditioning on the fixed value μ = μ∗. The MCMC
iterates from this reduced run are averaged over the product of gamma densities (8) eval-
uated at τ ∗ for M1 and M2, or (12) for M3 and M4. Finally, p(ω∗|μ∗,τ ∗,y) is obtained
from a third run of a further reduced Gibbs sampler conditioning on both μ = μ∗ and
τ = τ ∗. These iterates are averaged over the product of Dirichlet densities (10) evaluated
at ω∗ for M1, M2, or M3, or (13) for M4. A complete series of nested hypothesis tests
requires running 4 × 3 = 12 Gibbs samplers.

In addition to the Bayesian approach developed here, we consider likelihood ratio test-
ing, and model selection based on Akaike’s (1973) information criterion (AIC) and the
Schwartz (1978) Bayesian information criterion (BIC). The BIC typically penalizes dimen-
sionality more than AIC. We find in the data analyses of Section 5 that the BIC chooses
the same model as Bayes factors under the prior of Section 2. More generally, the BIC
is an asymptotic approximation to the logarithm of the Bayes factor, so the BIC provides
a reasonable approximation to the relative evidence for two competing models (Kass and
Raftery 1995).

5. EXAMPLES

5.1. BODY MASS OF BOREAL BIRDS

Two basic approaches are used to examine the possibility that body sizes do not fol-
low a continuous unimodal distribution. Holling (1992), Restrepo, Renjifo, and Marples
(1997), Marples (1998) and Stow, Allen, and Garmestani (2007) focus on quantifying
the number and location of discontinuities or gaps in the distribution of body sizes. Al-
ternatively, Havlicek and Carpenter (2001) focus on quantifying the number, location,
and size of modes in body size distributions. The former approach highlights the pos-
sibility that individuals or species of certain body sizes are not favored under a par-
ticular set of conditions, therefore creating gaps in the distribution of body sizes. We
consider the second approach, emphasizing “centers of attraction,” that is, optimal body
sizes characterized by cluster means μi1, . . . ,μiK in assemblage i. Moreover, it is not
our intent to either confirm or reject Holling’s textural-discontinuity hypothesis or other
hypotheses that may explain discontinuous distributions in body size (Holling 1992;
Allen et al. 2006), but rather to illustrate that fitting finite mixture models with compo-
nent restrictions can be a useful tool for shedding more light on the competing hypotheses.

We analyzed data on n1 = 106 boreal prairie birds found east of the Alberta short-
grass prairie and n2 = 101 boreal forest birds found east of the Manitoba–Ontario border
in pure or mixed conifer stands (Holling 1992; Appendices 1 and 3). We examined sev-
eral approaches to choosing K , including reversible jump MCMC (Richardson and Green
1997), a Dirichlet process mixture model (Escobar and West 1995), and BIC (Roeder and
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Table 1. Posterior probability of numbers of components K and modes m.

Posterior probability

Forest birds Prairie birds

Approach 1 2 3 ≥4 1 2 3 ≥4

Reversible jump K 0.00 0.09 0.71 0.20 0.00 0.75 0.21 0.04
m 0.00 0.11 0.80 0.09 0.01 0.94 0.05 0.00

DP mixture K 0.00 0.95 0.05 0.00 0.02 0.83 0.15 0.00
m 0.00 0.79 0.21 0.00 0.08 0.71 0.21 0.00

BIC K 0.00 0.07 0.93 0.00 0.01 0.95 0.04 0.00
m 0.00 0.15 0.85 0.00 0.02 0.97 0.01 0.00

Table 2. Likelihood-based Summaries for Birds. L is log-likelihood evaluated at MLE; d is dimensionality of
model.

K = 2 K = 3

Model d −2L AIC BIC d −2L AIC BIC

M1 10 402.5 422.5 455.8 16 366.0 398.0 451.4
M2 8 407.8 423.7 450.4 13 368.5 394.5 437.8
M3 6 409.5 421.5 441.5 10 372.9 392.9 426.3
M4 5 416.1 426.1 442.7 8 384.4 400.4 427.1

Wasserman 1997). Each method was calibrated to place most prior mass on one mode (Xu
2005). Table 1 shows the posterior distribution on K for the two mixtures. The number
of modes m is also included. Regardless of the method, we have rather strong evidence
against simple, homogeneous populations (K = 1). Most posterior mass is on K = 2 or
K = 3 components, with enough variability across approaches and ecological strata that
we chose K = 3 to be “as small as plausible.” The posterior summaries also suggest that
the mixture distributions are not unimodal, an indication that the components are fairly
well-separated.

Assuming K = 3 components, prior (6) gives log marginal densities of −221.97,
−219.75, −220.26, and −224.51 for Models 4,3,2,1. The model rankings are M3, M2,
M4 and M1, with corresponding Bayes factors B32 = 1.67, B24 = 5.53, and B41 = 12.68.
Kass and Raftery’s guideline classify B31 = 117.65 and B21 = 70.43 as strong evidence
against model M1. Furthermore, we have strong evidence that either the means are identi-
cal, or both the means and precisions are equal, but not the weights. We note that the same
model rankings were achieved using K = 2, but the rankings were more decisive using
K = 3. Figure 1 shows density estimates from models M2 and M3.

For comparison, Table 2 gives maximum likelihood-based model selection criteria as-
suming K = 2 and K = 3. The EM algorithm was used to compute the maximum likeli-
hood estimates. Although the AIC, BIC and our approach produce slightly different model
rankings, all three methods select M3 as best for K = 2 and K = 3. A step-up test at the
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5% level based on the likelihood ratio statistic chooses the most general model M1 whereas
a step-down test chooses the simplest model M4.

The strong support in our analysis for K = 2 or K = 3 components is in contrast with
Holling’s (1992, p. 458) results that suggest four or more body size clumps for both bird
distributions. Moreover, a comparison of the two distributions based on the methods de-
veloped in this paper, indicate that there are similarities between them but also differences.
A similar conclusion was reached by Holling (1992, p. 447) when he stated that “There
is a striking similarity, but not identity, between the clump structure of prairie and boreal
animals.” Unlike Holling, however, we were able to indicate the nature of the similarities
and differences. The former are given by the constant component means and precisions
whereas the latter by the strata-specific weights.

Although our intent was not either to confirm or reject Holling’s textural discontinuity
hypothesis, our analyses seem to provide some support to it. Under this hypothesis, it is
expected that the clump structure of body mass distributions should differ between animal
assemblages inhabiting landscapes that vary in their structure. The constant component
means and precisions are the aspects of the assemblage referred to in Section 1 as being
immutable whereas the weights represent different proportions of landscape features across
the prairie and forest strata, e.g., “isolated perches and trees and with the scattered shrubs
typical of some parts of the prairie” and, in fact, perhaps invite a regression analysis in the
form of HME.

Holling (1992) presented three additional hypotheses to explain the presence of clumps
in body mass data, and to some extent our results could also support the limited-morph
hypothesis (Holling 1992, p. 549). Under this hypothesis it is expected that animal sizes
“cluster into a small number of clumps even if the spatial attributes of their habitats are con-
tinuously distributed.” This clustering results from the fact that only a limited number of
“locomotory habits” are possible for a given range of body sizes such that hovering (hum-
mingbirds) and soaring (albatrosses) is only possible in small and large birds, respectively.
The stratum-specific weights here could be interpreted in terms of the relative abundance
of landscape features conducive to these types of locomotion.

5.2. ABORTION IN DAIRY COWS

As discussed in Section 1, the timing of spontaneous abortion in diary cows is of im-
mense interest to the dairy industry. Proper assessment of abortion risk can lead to im-
proved management strategies. Figure 2 shows distributions for the time-to-abortion in
days for 2302 pregnancies in dairy cows from six central California herds, along with
model M3 fits. The herd sample sizes are n1 = 434, n2 = 409, n3 = 307, n6 = 243,
n7 = 652, and n8 = 257. This is a subset of the time-to-abortion data analyzed by Han-
son et al. (2003) and Thurmond et al. (2005) using three-component mixture models. This
figure suggests K = 3 is appropriate.

Assuming K = 3, the marginal log-density ordinates (log{p(y)}) for models M4, M3,
M2 and M1 are −6675.33, −6580.74, −6584.27, and −6595.79, respectively. The corre-
sponding ordinates from a subsequent run of the Gibbs samplers differed by at most 0.13.
We have found, in general, that the marginal ordinate estimate is slightly more stable for
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Table 3. LPML statistics for AFT and M3 models across the six herds.

Herd

1 2 3 6 7 8 Total

AFT −2117 −2021 −1543 −1238 −3276 −1201 −11,396
M3 −2069 −1978 −1527 −1202 −3234 −1142 −11,151

the last three models relative to the first. We also fit the models with K = 4 twice, with

similar results and conclusions.

The model rankings based on the marginal density are M3, M2, M1, and M4. Using

Bayes factors, model M3, which has equal means and precisions but unequal weights

across herds, is strongly preferred (BF32 = 34.20) to M2 and very strongly preferred to

the other two models. The BIC values (minus 23000) are 856, 851, 789, and 950 for M1,

M2, M3, and M4, respectively. The corresponding AIC values (minus 23000) are 484,

596, 650, and 888. The AIC and likelihood ratio test choose the most complex model M1,

which might be expected given the large sample size. The BIC and marginal density es-

timates produce the same rankings and choose a more parsimonious model M3 with 30

fewer parameters (18 versus 48).

Table 3 compares log pseudo-marginal likelihood (LPML) across the six herds, as well

as the total LPML, for accelerated failure time (AFT) and M3 models fit with vague priors

in WinBUGS. The LPML, developed in Geisser and Eddy (1979), is a leave-one-out cross-

validated measure of how well a model predicts the data and is relatively insensitive to prior

specification. Larger values indicate better predictive ability. In terms of prediction, model

M3 clearly outperforms the AFT model (used by Hanson et al. 2003 for a superset of these

data). This is not surprising because Figure 2 is almost a textbook example of M3, whereas

there is little evidence of accelerated time “warping” (i.e., stretching or compacting) across

the herds.

Hanson et al. (2003) describe two windows of elevated risk of abortion, verified by

field studies. An inhospitable uterine environment can lead to an initial phase of elevated

abortion risk 30–60 days after conception. A second window of elevated risk occurs 80–

140 days after conception, from possible exposure to pathogens from the dam followed by

an incubation period. Pathogens thought to possibly lead to abortion include brucellosis,

listeriosis, leptospirosis, and bovine viral diarrhea. Maternal risk factors include parity

and age. The fitted densities in Figure 2 roughly confirm the two windows of elevated

risk, but also indicates a third window of risk, occurring at roughly 200–250 days but

with substantially lower hazard. There is evidence that herd characteristics (e.g., culling

strategies, disease management) influence the relative proportions of cows experiencing

the three different types of abortion hazard implied by the model. On a herd-to-herd basis,

this could have profound management implications. For example, in a herd relatively free

of pathogens the hazard will substantially drop after the first time-window.
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6. CONCLUSIONS AND DISCUSSION

We presented four nested models that provide a meaningful framework for comparing
finite mixture models across populations. The models use a practical data-driven prior,
based on the work of Richardson and Green (1997), that assumes a reasonable spread
within components relative to the range of the observed data. Computational methods for
computing Bayes factors based on the work of Chib (1995) were developed. The approach
was verified on simulated data and further illustrated with examples from ecology and
agriculture.

We also compared our approach to AIC, BIC and likelihood ratio tests, each of which
is based on maximum likelihood estimates for the parameters of the mixture models. The
EM algorithm is easily implemented for the models we discussed, but as with a Bayesian
approach, computational difficulties may arise, especially when the sample size is insuf-
ficient to inform estimation in each component. Chung, Loken, and Schaefer (2004) note
that mixture likelihoods can be nearly flat, have multiple local modes, and maxima on the
boundary of the parameter space. Each of these issues may adversely impact the small
sample behavior of maximum likelihood methods. Putting aside computational issues and
personal preferences, a Bayesian approach provides some clear advantages such as the
ability to formally compare models with different numbers of components and to quantify
the number of modes in body size distributions.

The hierarchical mixture of experts (HME) model and variants described in McLachlan
and Peel (2000, Chapter 10) can be used to take advantage of the three well-defined stages
in which spontaneous abortion appears to occur in diary cows. Another approach would
be to model latent transition probabilities for passing from one stage to the next with a
discrete hazards regression model or a continuation-ratio logistic model. These models
would attempt to replace the herd-specific weights ωi = (ωi1,ωi2,ωi3) in the finite mixture
model with functions of herd and cow specific covariates, thus generalizing the model. In
the absence of such covariates, an approach that borrows strength across herds, and thus
is useful for prediction, would be to consider a hierarchical random effects model, for
example,

ωi |a iid∼ Dirichlet(a), log(a)|m,V ∼ N3(m,V).

Xu (2005) compares Holling’s (1992) boreal forest mammals to boreal prairie mammals
and found considerable evidence for K = 2 components in both populations. The marginal
likelihood ranks the models in M4, M3, M2, M1, with a decisive difference between mod-
els M1 and M2, but only a slight difference among models M4, M3, and M2. Similar to
the boreal bird data, this suggests constant cluster locations, or centers of attraction, across
disperse ecological strata: forest and prairie. The environmental strata could conceivably
provide the weights attached to each cluster, but the cluster locations, and possibly spreads,
seem rooted beyond these differences, somewhat supporting the limited-morph hypothe-
sis. It would be of interest to fit HME models to these data, perhaps incorporating more
ecological strata, including covariates of interest such as percentages of different types of
flora and the availability of water and food.
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A simulation study of the proposed method’s characteristics based on Xu (2005) is
provided online.

SUPPLEMENTAL MATERIALS

Simulation study Simulation study of the proposed method’s small-sample characteris-
tics.

[Received April 2008. Published Online March 2010.]
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