TABLE 6.3 Summary of Significant Frequencies from Fourier Analyses of Time-Series Data Sets

DATA SET	WINDOW GRAIN	GRAIN	FREQUENCIES (YEARS)		
		PRIMARY	SECONDARY	TERTIARY	
RAINFALL	39 уг	day	1	0.25	0.3
	39 yr	month	1	0.25	0.3
	44 yr	year	6	8.00	11.0
WATER STAGE	22 yr	day	1	7.00	3.0
		month	11	1.00	3.0
WATER FLOW	44 уг	month	1	8.00	22.0
PAN EVAPORATION	22 yr	month	1	11.00	5.0

regions of self-similarity, although the reasons for this result are unclear. Temporal patterns in the stage and flow reflect dominant frequencies in the interplay among the faster dynamics of the atmosphere, the intermediate speeds of the surface water, and the longer-term variations in vegetation, climate, and sea level.

These analyses support the theory that ecosystems are structured around a few keystone variables of mixed spatial and temporal dimensions. Dramatic patterns of discontinuities appear as a result of the interactions within and between hierarchical levels in space and time. This emerging viewpoint of ecosystem structure and dynamics may provide a better basis for understanding the dynamics of the Everglades and hence help to meet multiple management objectives in this unique ecosystem.

7

DISCONTINUITIES IN THE GEOGRAPHICAL RANGE SIZE OF NORTH AMERICAN BIRDS AND BUTTERFLIES

£

Carla Restrepo and Natalia Arango

ELUCIDATING LARGE-SCALE patterns in plant and animal assemblages is a key step toward understanding ecosystem dynamics and their likely responses to current and future regional and global threats. An attribute that has been widely used in this context is body size because of its well-known relationship with physiological, morphological, and population-level traits (Peters 1983; Schmidt-Nielsen 1984; Niklas 1994; Calder 1996). For example, body size in plant and animal assemblages has been used to characterize energy and nutrient pool sizes as well as fluxes in ecosystems (Kimmel 1983; Wen, Vezina, and Peters 1994; Cyr and Peters 1996; Cyr, Downing, and Peters 1997). In addition, it has been used to understand variation in species diversity (Harris, Piccinin, and van Ryn 1983) and to evaluate the response of ecosystems to disturbance, including climate change (Sprules and Munwar 1986; Jacobs 1999). Less used in this context have been home range and geographical range size, two attributes that have a strong spatial component and that therefore may be informative of processes underlying the distribution of individuals and populations in space (Brown, Stevens, and Kaufman 1996; Maurer and Taper 2002).

The geographical range is the basic biogeographical unit and represents the total area over which a species is found (Brown, Stevens, and Kaufman 1996; Gaston and Blackburn 2000). It has been described in terms of its structure and size. Whereas *structure* indicates "how" population demographic attributes are distributed in space (Brown 1984; Villard and Maurer 1996; Brewer and Gaston 2003), *size* indicates the range of abiotic and biotic conditions that a species can tolerate (Gaston and He 2002, and references therein). *Shape*, a third attribute of geographical range, has been postulated to reflect the limitation of ecological factors, including the physical structure of continents (Rapoport 1982; Ruggiero

We are grateful to William Beltrán, Andres Cuervo, Sylvia Heredia, and Rodney Rodríguez for helping put together the bird and butterfly data sets and to Craig Stow and Jennifer Skillen for their valuable comments on early versions of this manuscript. This work was funded by National Science Foundation grant NSF-CREST (HRD no. 0206200).

102 DISCONTINUITIES IN THE GEOGRAPHICAL RANGE SIZE

2001). Thus, the geographical range reflects past and present conditions influencing the large-scale spatial dynamics of plant and animal populations.

Of these three attributes, geographical range size may be particularly informative of processes underlying the origin and maintenance of species diversity. First, the frequency of small and large geographical ranges may suggest conditions favoring speciation and extinction, including such conditions as the expansion and contraction of geographical ranges within given taxa and regions (Gaston and Blackburn 1997; Vilenkin and Chikatunov 1998; Webb and Gaston 2000; Crisp et al. 2001; Jablonski and Roy 2003). Second, the distribution of geographical range size may be used to compare assemblages and to establish whether a similar suite of processes can explain large-scale patterns of species diversity (Gaston 1998; Gaston et al. 1998; Paulay and Meyer 2002). Third, geographical range size is an important criterion in identifying species' vulnerability to largescale disturbances, such as those resulting from human activities (Terborgh and Winter 1983; Kunin and Gaston 1993; Mace 1994; Angermeir 1995; Arita et al. 1997; Jones, Purvis, and Gittleman 2003). Finally, understanding patterns in the distribution of geographical range size may help design plans for the long-term preservation of the evolutionary and biogeographical processes that underlie the origin of species diversity (de Klerk et al. 2002; Hughes, Bellwood, and Connolly 2002; Jansson 2003).

Geographical range size has been expressed in several ways, depending on whether range maps, information on species' latitudinal/elevational limits, presence/absence, and abundance for a given region are available (Gaston 1994; Brown, Stevens, and Kaufman 1996; Gaston et al. 1996; Quinn, Gaston, and Arnold 1996). In general, species differ widely in the size of their geographical range such that a large number of species are narrowly distributed, whereas a small number are widely distributed (Gaston 1990, 1998; Brown, Stevens, and Kaufman1996; but see Hughes, Bellwood, and Connolly 2002). In more quantitative terms, these right-skewed distributions of range size have been shown to resemble unimodal, continuous, log-normal distributions (Gaston 1996; Gaston and Blackburn 1997), and several explanations for such patterns have been proposed (for a summary, see Gaston and Blackburn 2000; McGeoch and Gaston 2002). Surprisingly, most of the explanations are based on processes operating over ecological or short-term scales that do not necessarily match the long-term scales associated with evolutionary and biogeographical processes involved in the origin, expansion, and extinction of species.

Alternatively, one may ask whether the distribution of geographical range sizes exhibits patterns of discontinuity or multimodality, as has been shown for body size (Holling 1992). A multimodal distribution in range size suggests the presence of discontinuities, and it follows from Holling's Textural Discontinuity Hypothesis (TDH) that modes in range size should be associated with attributes that are discontinuous in space and time and that are known to have influenced evolutionary and biogeographical processes. The distinctive nature of landforms and the characteristic rates of processes that give rise to them (Brundsen 1996) offer a natural way to evaluate the TDH (Holling 1992) in a biogeographical context. For example, unusual geological substrates and landforms, including mountains, are well known for harboring species with restricted geographical ranges (Van der Werff 1992; Tuomisto and Poulsen 1996; Printaud and Jaffré 2001; de Klerk et al. 2002). Likewise, landscapes covering extensive areas, whether as a result of natural or anthropogenic processes, harbor species that have large geographical ranges (Terborgh and Winter 1983; Duncan, Blackburn, and Veltman 1999). And species' distributions are known to cluster in space, allowing the identification of geographical regions with unique characteristics (Hagmeier and Sults 1964).

Here we focus on North American birds and butterflies to address three questions. Does the distribution of geographical range sizes for these two taxa exhibit multiple modes? Do the distributions of geographical range sizes of these two unrelated volant taxa exhibit similarities? And are the modes and discontinuities in the size distribution of geographical ranges related in a meaningful way with landscape attributes?

METHODS

State of the second second

We restricted our analysis to North America defined as the continental mass that includes the United States, Canada, and Greenland; in some few instances, we included species whose geographical range extends into northern Mexico (fig. 7.1). The area occupied by the first three countries totals approximately 21.5 by 106 km², representing 14% of the Earth's land surface. Within this area, we included only those species whose geographical range falls completely within the boundaries described. This means that year-round residents and intracontinental migrants, but not intercontinental migrants, were included in our study. Although such restriction substantially decreased our sample size, it generated a more homogeneous group of species whose geographical ranges were more likely to be influenced by processes shaping North America as described earlier. It is well known that the majority of intercontinental migrants reported in North America belong to taxa that originated in the Neotropics (Levey and Stiles 1992). In addition, their geographical ranges are depicted as highly disjunct; breeding and wintering grounds do not overlap, raising the issue of how to measure their range size. In total, 136 species of birds and 288 species of butterflies met the criteria described here (see appendixes 7.1 and 7.2).

FIGURE 7.1 Map of North America showing main physiographic units (black lines) and Bailey's ecoregions (white lines). Numbers correspond to physiographic units: Pacific Mountain System (1), Intermontane Plateaus (2), Rocky Mountain System (3), Interior Plains (4), Interior Lowlands (5), Interior Highlands (6), Appalachian Highlands (7), Piedmont (8), Atlantic Plain (9), and Canadian Shield (10).

DISCONTINUITY IN GEOGRAPHICAL RANGE SIZE

We used published range maps of North American birds (National Geographic Society 2002) and butterflies (Scott 1986) to obtain geographical range-size data. Therefore, we express geographical range size in terms of extent, or the total area over which a species has been recorded, irrespective of range structure and shape (Brown, Stevens, and Kaufman 1996; Gaston and Blackburn 2000). For intracontinental migrants, we summed the breeding and wintering ranges to obtain a single figure for the size of their geographical range. We followed a three-step procedure to estimate the size of the geographical ranges. First, we scanned (600 dpi) the published range maps and processed the digital maps to eliminate pixels representing political boundaries and labels. Second, we used a clustering algorithm based on an eight-neighborhood rule to identify and measure the number of pixels in each cluster of the black-and-white range map images (Imagine, ERDAS). Last, we converted the number of pixels into metric units based on a model that predicts area (km²) from pixel number. For this purpose, we selected from the range maps those features with known areas, such as states and provinces of the United States and Canada, and processed them as described here. This selection was necessary because the scale of the range maps differed between butterflies and birds, as well as within birds.

Geographical range-size data obtained in this fashion may have some limitations that need to be addressed. First, range maps can be generated using different methods that reflect predicted distribution based on habitat preferences, or the actual distribution based on field or museum observations or both (Brown, Stevens, and Kaufman 1996). Whereas we know that this latter method was used to generate the butterfly map ranges (Scott 1986), we do not know how the bird maps were prepared. Second, these maps, in contrast to those derived from coordinated large-scale censuses, are likely to provide a relatively crude estimate of the real size of geographical ranges and do not reflect the structure of the geographical range (Maurer 1994). However, maps derived from coordinated efforts are available only for limited taxa or geographical regions or both. Third, range maps generated by different authors are likely to be based on maps differing in terms of their projection or scale or both, as was the case with the bird and butterfly maps we used. Such difference may introduce an important source of error when data sets based on different maps are compared. Last, the size of small geographical ranges may be underestimated because of the small scale of the base maps. In spite of these limitations, range maps represent the best source of information available to estimate sizes of geographical ranges and make comparisons across taxa.

We used the Gap Rarity Index (GRI) to identify aggregations (or modes) and discontinuities (or gaps) in the size distribution of geographical ranges (Restrepo, Renjifo, and Marples 1997). The GRI method tests whether discontinuities in an observed distribution of rank-ordered data are unlikely in data sampled from a continuous unimodal log-normal distribution fit to the observed data. First, a continuous unimodal distribution is obtained by constructing a normal kernel density estimate that uses the smallest window width (h) that smoothes the observed frequency distribution (Silverman 1986). Second, absolute gaps in a variable of interest are measured, $d_1 = s_{i+1} - s_i$, where s_i is the log₁₀ of *i*th geographical range size in rank-size-ordered data, and their significance was tested based on the index, D_{i} . This index is a statistic measuring the proportion of simulated absolute gaps smaller than the observed, and it is obtained by sampling the continuous unimodal distribution ten thousand times (Restrepo, Renjifo, and Marples 1997).

CLUSTERS OF SPECIES IN GEOGRAPHICAL SPACE

The geographical range of a species reflects the gamut of abiotic and biotic conditions influencing a species' life span in space and time and therefore is indicative of a species' history. Broad-scale subdivisions of land based on terrain structure and geology—that is, physiographic units—are ideal to classify species in geographical space. Such a map exists for the United States (Fenneman and Johnson 1946; Vigil, Pike, and Howell 2002), but not for the entire region considered in this study (but see Barton, Howell, and Vigil 2003). Instead, we used Bailey's (1998) map of North American ecosystems, or ecoregions, which reflects physiographic units to some extent. In addition, the resolution of the ecoregions was fine enough to allow a detailed characterization of birds and butterflies' geographical ranges, especially those restricted to small areas. We refer to major physiographic provinces (Fenneman and Johnson 1946) to report our results (fig. 7.1).

After differentiating ecoregions represented on both coasts into east and west to account for the different origins of the land (King and Beikman 1974), we identified for each species the ecoregions falling within the limits of the range maps. We recorded ecoregions as present or absent irrespective of whether the ecoregion was widely or narrowly represented. We ran a cluster analysis using Sorensen's index as a distance measure to avoid the double zero problem and using flexible beta ($\beta = -0.25$) as the group linkage method to build dendrograms (Legendre and Legendre 2003). We used branches in the dendrogram at 50% of similarity to distinguish clusters of species occupying similar geographical regions, hereafter referred to as zooregions (Hagmeier and Sults 1964). The misplacement of some species in the clusters was unavoidable, in part because of the scale of the range maps and our inability to identify ecoregions within the range maps. This misplacement may have resulted in the inclusion of some ecoregions that were not really represented within the boundaries of the published maps. We classified each species according to aggregation in geographical range size and zooregion, and we used chi-square tests to evaluate whether affiliation to a given aggregation was independent from affiliation to a given zooregion.

RESULTS

The geographical ranges of birds and butterflies exhibited a right-skewed distribution and overlapped over a wide range of values (4.9 by 10^4 to 1.3 by 10^7 km²), yet butterflies exhibited the smallest and birds the largest geographical ranges (3.8 by 10^4 km² and 1.51 by 10^7 km², respectively) (fig. 7.2). The observed distribution of bird and butterfly geographical range sizes did not differ

FIGURE 7.2 Observed cumulative distribution function of geographical range size of North American birds (@) and butterflies (O).

(K-S=0.1327, P=0.07) (fig. 7.2). When compared against an expected lognormal distribution, however, the observed distribution of butterfly geographical ranges (K-S=0.08, P=0.03), but not of bird geographical ranges (K-S=0.06, P=0.69), was significantly different (fig. 7.3). This difference suggests that properties other than the mean and standard deviation, the two parameters that describe the shape of log-normal distributions, may be responsible for the similarities between the two observed distributions. One possibility is that the observed distributions exhibit patterns of discontinuity and aggregation.

An examination of the cumulative density curves shows a large discontinuity at approximately 5.8 km² (log-transformed value or 6.0-by-105-km² untransformed value) in both data sets, hereafter referred to as the 6GAP (figs. 7.3 and 7.4). Furthermore, changes in the slope of the cumulative density curves of the observed data in several regions suggested additional discontinuity when compared to the expected lognormal cumulative density curves. We identified seven aggregations in the distribution of geographical range sizes of butterflies (P=0.006) and birds (P=0.002) using the GRI method (fig. 7.4). This analysis confirmed the presence of the discontinuity found at approximately 5.8 km² (log-transformed value) as well as of other discontinuities already observed in the cumulative density curves of the two taxa. Below the 6GAP, we identified three and two aggregations in the bird and butterfly data sets, respectively. In this region, there seems to be a match in aggregation 1 in each of the data sets and between aggregation 2 for butterflies and aggregations 2 and 3 for birds. Above the 6GAP, we found four and five aggregations in the bird and butterfly data sets, respectively. Aggregations 4 and 5 for birds seem to match aggregation 3 for butterflies, but any resemblance thereafter is less obvious.

FIGURE 7.3 Observed (O) and expected (black line) cumulative distribution functions of geographical range size of North American butterflies and birds. The expected cumulative distribution functions correspond to a log-normal distributions with parameters estimated from the data. There is a large discontinuity in the observed distributions at approximately c 8km2 (log-transformed data). We refer to this discontinuity as the 6GAP.

FIGURE 7.4 Identified discontinuities and aggregations in the distribution of geographical range size of North American birds and butterflies resulting from the GRI analysis. Changes in color and hatching from white to black indicate a greater percentage of species falling within each aggregation, with black indicating the largest percentage.

CLUSTERS OF SPECIES IN GEOGRAPHICAL SPACE

For birds, we identified six major clusters, or zooregions (fig. 7.5). Zooregion 1 included species restricted to small areas in the Pacific Mountain System (California and Baja California) and small areas of the Intermontane Plateaus (southwestern United States). Zooregion 2 was represented by species found in the Interior Plains (southwestern United States), in some instances reaching into the southern Rocky Mountain System and the Intermontane Plateaus. Species found in the Atlantic Plain and increasingly extending into the Piedmont, Appalachian Highlands, and Interior Highlands were grouped in zooregion 3. A small group of species found in the Pacific Mountain System of the northwestern United States (including Alaska) and western Canada defined zooregion 4. Species found mostly in the Rocky Mountain System and the Intermontane Plateaus defined zooregion 5. Finally, species found in the Pacific Mountain System, Intermontane Plateaus, and Rocky Mountain System from Alaska to northern California, Arizona, and New Mexico and then extending into the Canadian Shield (Laurentian Upland and Lowland), Interior Highlands, Appalachian Highlands, and Atlantic Plain were grouped in zooregion 6.

Butterflies clustered in geographical space in a similar, but not identical, manner as birds clustered (fig. 7.6). We identified seven major zooregions, the first

FIGURE 7.5 Dendrogram showing clusters of North American birds based on the occurrence of ecoregions within their geographical ranges. Each species is also identified with a symbol indicating aggregation number affiliation: aggregation 1 (*), aggregation 2 (O), aggregation 3 (\square), aggregation 4 (*), aggregation 5 (\triangle), aggregation 6 (\blacktriangle), and aggregation 7 (∇). Species' clusters are identified with the large gray and white boxes.

FIGURE 7.6 Dendrogram showing clusters of North American butterflies based on the occurrence of ecoregions within their geographical ranges. Each species is also identified with a symbol indicating aggregation number affiliation: aggregation 1 (\bullet), aggregation 2 (O), aggregation 3 (\square), aggregation 4 (\blacksquare), aggregation 5 (\triangle), aggregation 6 (\blacktriangle), and aggregation 7 (∇). Species' clusters are identified with the large gray and white boxes.

composed of species restricted to sites in the Pacific Mountain System (California). Zooregion 2 grouped butterfly species found mostly in the Intermontane Plateaus (southwestern United States and extending into northern Mexico). Species found in the Intermontane Plateaus and Interior Plains of the southwestern United States were grouped in zooregion 3. Species found in the Rocky Mountain System, northern Intermontane Plateaus, and Pacific Mountain System of the United States were grouped in zooregion 4. Species restricted to small areas in the Pacific Mountain System of northwestern Canada and extending into the northern Pacific Mountain System of the United States, Intermontane Plateaus, Rocky Mountain System, Interior Plains, and Canadian Shield were grouped in zooregion 5. Species found in the Interior Lowlands and Appalachian Highlands were in zooregion 6. Finally, those species distributed in the Atlantic Plain were grouped in zooregion 7.

DISCONTINUITY IN GEOGRAPHICAL RANGE SIZE AND CLUSTERS OF SPECIES IN GEOGRAPHICAL SPACE

We classified bird species according to the size of their geographical range (aggregation number) and zooregion, and we found a significant association between these two variables ($\chi^2 = 131.9$, df = 20, P = 0.0001) (table 7.1; fig. 7.5). An examination of the post hoc individual cell values revealed that species with

TABLE 7.1 Number of North American Bird Species Classified in Terms of TheirGeographical Range Size (Aggregation Number) and Zooregion (Cluster ofSpecies in Geographical Space)

-	in a subsection of the	Cl	USTERS O	SPECIES	IN GEOGRA	PHICAL SPA	\CE
		Z00_1	Z00_2	ZOO_4	200_5	Z00_6	Z00_3
	AGGREGATION 1	2	0	0	0	0	1
SIZEE	AGGREGATION 2	9	4	1	1	0	2
RANGE 3	AGGREGATION 3	5	5	1	0	0	· 2
_	AGGREGATION 4	3	4	1	5	0	2
GEOGRAPHICAL	AGGREGATION 5	0	3	1	3	1	2
GEOG.	AGGREGATION 6	1	5	0	22	5	10
	AGGREGATION 7	0	0	0	2	29	4

Note: Zooregions 1 and 2 and aggregations 1 and 2 were pooled to carry out the statistical analysis described in the text.

TABLE 7.2 Number of North American Butterflies Classified in Terms of Their Geographical Range Size (Aggregation Number) and Zooregion (Cluster of Species in Geographical Space)

			CLUSTER	S OF SPE	CIES IN G	EOGRAPHI	CAL SPACE	
		ZO0_1	ZOO_2	ZO0_3	ZOO_4	ZOO_5	ZOO_6	Z00_7
weiti	AGGREGATION 1	9	2	7	0	0	0	0
SIZEE	AGGREGATION 2	18	5	19	7	1	6	14
RANGE (AGGREGATION 3	0	0	10	55	4	16	20 *
	AGGREGATION 4	0	0	0	2	0	4	2
SEOGRAPHICAL	AGGREGATION 5	0	0	0	1	1	1	2
GEOGI	AGGREGATION 6	0	0	0	8	45	23	1
	AGGREGATION 7	0	0	0	0	4	0	0

Note: Zooregions 1 and 2 and aggregations 6 and 7 were pooled to carry out the statistical analysis described in the text.

small geographical ranges (aggregations 1 and 2) were represented more often than expected in zooregions 1 and 2. Likewise, species in aggregations 6 and 7 were found more often than expected in zooregions 5 and 6, respectively.

The butterfly zooregions were significantly associated with geographical range size ($\chi^2 = 305.6$, df = 25, P = 0.0001) (table 7.2; fig. 7.6). We found that species with small geographical ranges (aggregations 1 and 2) were found more often than expected in zooregions 1 through 3. These ranges were followed by medium-size geographical ranges (aggregation 3) found more often than expected in zooregion 4. The largest geographical ranges (aggregations 6 and 7) were found more often than expected in zooregions 5 and 6.

DISCUSSION

The distribution of geographical range sizes for North American birds and butterflies was discontinuous, characterized by aggregations and discontinuity (gaps). Moreover, the location of aggregations and gaps in the two data sets exhibited important similarities. Further, there is a strong association between aggregations in the size distribution of geographical ranges and clusters of species in geographical space. Taken altogether, these three findings support the idea that discontinuities

114 DISCONTINUITIES IN THE GEOGRAPHICAL RANGE SIZE

and aggregations in the distribution of geographical range size may reflect largescale spatial attributes as predicted by the TDH (Holling 1992).

Although this is the first time to our knowledge that Holling's TDH has been tested in a biogeographical context, some earlier work has shown that when geographical range size is expressed in terms of site occupancy, bimodal distributions arise (Hanski 1982). Specifically, there is a high frequency of species that are locally sparse and regionally uncommon and of species that are locally abundant and regionally common; in between these two extremes fall species with intermediate site occupancies. It has been proposed that such patterns may result from biological processes (low environmental heterogeneity) or artefactual effects (small sampling extents) (for a recent review, see McGeoch and Gaston 2002). Yet the distribution of geographical range size of mammals in North America (Simpson 1964) and of birds in the Neotropics (Gaston and Blackburn 1997), two large and heterogeneous regions, seems to be bimodal.

The 6GAP at approximately 600,000 km² (untransformed value) was a distinctive feature in both the bird and the butterfly data sets. In the bird data, we clearly identified three aggregations (n=33 species, or 24% of the total) below this value, and most of the member species were found in the Pacific Mountain System (California) and the southern Intermontane Plateaus (Texas, New Mexico, Arizona, and northern Mexico). A very small fraction of the species falling within these three aggregations were restricted to the Atlantic Plains, either to the central sand dunes of Florida or to a narrow strip along the coastline, extending increasingly inwards. In the butterfly data, we identified two aggregations below the 6GAP (n = 88 species, or 31% of the total), and, as for birds, these aggregations included mostly species found in the southern Pacific Mountain System (California), the Intermontane Plateaus, and the Interior Plains. Unlike for birds, however, we found many more butterfly species with small ranges centered in the Interior Plains (Texas) and the Atlantic Plains. In fact, this finding may have contributed to our recognition of an additional zooregion for butterflies, zooregion 7. For the most part, however, the 6GAP separated butterfly species and bird species with small geographical ranges (less than 1% of the size of the North American continent) that seem to be associated with complex or relatively recent landforms, or both (Fenneman and Johnson 1946; King and Beikman 1974). These landforms are ecotonal in character in two ways. First, they developed along the margins of the stable core of North America and are relatively new from a geological perspective. Second, they are currently influenced by a subtropical climate.

In the bird data set, we identified four aggregations above the 6GAP. Aggregations 4 and 5 had few species distributed more or less evenly among the six zooregions, whereas aggregations 6 and 7 included the largest number of species (not only above the gap, but overall) and were characteristically associated with zooregions 5 and 6, respectively. The attributes of the geographical ranges of species belonging to aggregations 4 and 5 are thus apparently "transitional" in character in that these species, unlike species with smaller or larger ranges, are not strongly associated with any zooregion. This conclusion is illustrated by the following two examples. First, although most birds considered in our analyses have their geographical ranges within the North American continent as defined in this work, we included a few that extended south to central Mexico. These species were found in aggregations 4 and 5, and the inclusion of this additional piece of land apparently introduced a source of heterogeneity not found within the area that we defined as the North American continent. In other words, this landform left an imprint on the size distribution of geographical ranges. Second, within a given zooregion some species had "unusual" geographical ranges. For example, three species in aggregation 4 found in the Pacific Mountain System had narrow but very long geographical ranges extending along most of the coast of Canada and the United States (Sphyrapicus ruber and Calypte anna) or along the coast of the United States and Mexico (Calypte costae). Other species were all-year residents (Strix occidentalis and Lagopus leucurus) that have disjunct populations such that their geographical ranges include dissimilar ecoregions. In contrast to aggregations 4 and 5, aggregation 6 had the largest number of species (32%), the vast majority of which had geographical ranges within the Rocky Mountain System and the Intermontane Plateaus of the United States. Aggregation 7 had the second-largest number of species (26%), but these species, unlike most of the species in aggregation 6, were found distributed across the continent in an east-west direction either centered in the Canadian Shield physiographic unit or entering the Rocky Mountain System and the Appalachian Highlands. Only two species had ranges spanning most of the study area (Junco hyemalis and Colaptes auratus), but these ranges were nevertheless smaller than the total area.

For butterflies, we found a large aggregation above the 6GAP (106 species, or 37% of the total) that included species with geographical ranges centered in the Rocky Mountain System and Intermontane Plateaus. This aggregation mirrors aggregation 6 for birds. Aggregations 4 and 5 had very few butterfly species and, as found for birds, had "unusual" geographical ranges for the zooregion in which they fell. They marked a transition between aggregations 3 and 6, the latter including species with geographical ranges running predominantly in an east-west direction, as was the case for birds.

Two non-mutually exclusive explanations may account for these results. First, aggregations and discontinuities in the distribution of geographical range size are the result of changes in the shape of the geographical ranges, which in turn are influenced, if not constrained, by the structure of the landforms where the species originated. Second, range expansion or contraction over a species' life span may have translated into changes of geographical range shape and size, and therefore into changes in the overall distribution of range sizes at a continental scale. We speculate that underlying these two explanations is a problem of

geographical range allometry and, more specifically, of the occurrence of scale breaks most likely resulting from the ways in which landscapes are structured at large scales. These hypotheses can be easily tested by examining the distribution of geographical range size of plant and animal assemblages from other continents of equivalent area and range of climate, but of different structure.

The qualitative similarities between birds and butterflies above the 6GAP, however, were not matched in terms of the correspondence of aggregations and discontinuities. One reason for this result may be that differences between the bird and butterfly maps were ultimately reflected in the size and shape of the ranges. Also, the level of detail in the two sets of maps may have affected our ability to discern which ecoregions were found within the ranges. Alternatively, the lack of correspondence of aggregations and discontinuities above the 6GAP in both data sets may reflect real differences in the way birds and butterflies, two taxa that differ greatly in size, perceive and exploit resources. The occurrence of a larger number of butterflies in each aggregation-zooregion combination may provide support to this idea.

The simultaneous examination of geographical range size and ecoregions provides tremendous insight into the processes underlying the distribution of attributes used to characterize species assemblages. In particular, the distribution of geographical range size has previously been characterized in most instances as a continuous, unimodal, right-skewed distribution that may become normal or slightly left skewed when log transformed. Instead, we found several aggregations of varying size clearly associated with landscape attributes. These findings may have implications in terms of how we define endemic species, how we predict which geographical range sizes are likely to expand or contract, and perhaps which areas deserve special conservation status because many species seem to originate in them. APPENDIX 7.1 North American Bird Species Included in the Study of Discontinuities in Geographical Range Size

FAMILY	SPECIES	GEOGRAPHICAL RANGE SIZE (KM²)	AGGREGATION NUMBER
CATHARTIDAE	Gymnogyps californianus	48,893.40	1
CORVIDAE	Aphelocoma coerulescens	52,664.61	1
CORVIDAE	Pica nuttalli	76,695.89	1
PHASIANIDAE	Tympanuchus pallidicinctus	121,726.58	2
EMBERIZIDAE	Ammodramus caudacutus	146,754.99	2
EMBERIZIDAE	Plectrophenax hyperboreus	150,598.00	2
EMBERIZIDAE	Aimophila carpalis	160,181.28	2
FRINGILLIDAE	Carduelis laurencei	165,634.29	2
FRINGILLIDAE	Leucosticte australis	183,919.68	2
EMBERIZIDAE	Pipilo aberti	185,375.69	2
PARIDAE	Poecile sclateri	199,200.96	2
EMBERIZIDAE	Ammodramus maritimus	216,923.62	2
MIMIDAE	Toxostoma redivivum	231,778.70	2
PARIDAE	Baeolophus inornatus	234,654.83	2
MIMIDAE	Toxostoma lecontei	236,188.01	2
EMBERIZIDAE	Agelaius tricolor	238,812.84	2
PICIDAE	Picoides nuttallii	245,561.42	2
POLIOPTILIDAE	Polioptila californica	254,167.75	2
TIMALIIDAE	Chamaea fasciata	254,762.01	2
PICIDAE	Picoides albolarvatus	276,036.31	2
EMBERIZIDAE	Pipilo crissalis	323,744.90	3
EMBERIZIDAE	Quiscalus major	349,633.87	3.
PICIDAE	Colaptes chrysoides	383,256.72	3

ć

APPENDIX 7.1 Continued

MIMIDAEToxostoma benüirçi486,047.023MIMIDAEToxostoma benüirçi486,047.023CORVIDAEAphelocoma ultramarina530,984.163PICIDAEMelanarpes uropygialis531,370.053EMBERIZIDAEAimophila abstivalis537,033.513ODONTOPHORIDAECallipepla gambelii563,372.013STRIGIDAEMicrathene whitneyi617,440.323VIREONIDAEVireo vicinitor721,610.064FRINGILLIDAELeucosticte atrata734,140.314SITTIDAESitta pusilla791,941.024STRIGIDAEBaeolophus rufescens879,115.834PICIDAEPicoides borealis828,931.324PARIDAECalypte anna887,002.664PHASIANNIDAECentrocercus urophasianus932,101.984PARIDAEBaeolophus griseus936,687.334DONTOPHORIDAECallipepla californica959,438.994PARIDAEAmmodramus bairdii1,037,495.494	FAMILY	SPECIES	GEOGRAPHICAL RANGE SIZE (KM ²)	AGGREGATION NUMBER
CODONTOPHORIDAEOreortyx pictus447,287,383CORVIDAECorvus caurinus480,633,523CORVIDAECorvus caurinus480,633,523CORVIDAEToxostoma bendirei486,047,023CORVIDAEAphelocoma ultramarina530,984,163CORVIDAEAphelocoma ultramarina531,370,053EMBERIZIDAEMilanerpes uropygialis531,370,053EMBERIZIDAEAimophila abstivalis537,033,513ODONTOPHORIDAECallipepla gambelii563,372,013STRIGIDAEMicrathene whitneyi617,440,323VIREONIDAEVireo vicinitor721,610,064FRINGILLIDAELeucosticte atrata734,140,314SITTIDAESitta pusilla791,941,024STRIGIDAEPicoldes borealis828,931,324PARIDAEBaeolophus rufescens879,115,834PARIDAEBaeolophus rufescens879,115,834PARIDAEBaeolophus griseus936,687,334PARIDAEBaeolophus griseus936,687,334PARIDAEBaeolophus griseus936,687,334PARIDAEBaeolophus griseus936,687,334PARIDAEBaeolophus griseus936,687,334PANIDAECallipepla californica959,438,994PANIDAEPolioptila melanura1,040,316,484	PHASIANIDAE	Tympanuchus cupido	387,283.86	3
CORVIDAECorvus caurinus480,633.523MIMIDAEToxostoma benüirei486,047.023CORVIDAEAphelocoma ultramarina530,984.163PICIDAEMelanerpes uropygialis531,370.053EMBERIZIDAEAimophila abstivalis537,033.513ODONTOPHORIDAECallipepla gambelii563,372.013STRIGIDAEMicrathene whitneyi617,440.323VIREONIDAEVireo vicinitor721,610.064FRINGILLIDAELeucosticte atrata734,140.314SITTIDAESitta pusilla791,941.024STRIGIDAEBaeolophus rufescens879,115.834PICIDAEPicoldes borealis828,931.324PICIDAEDirectrus urophasianus932,101.984PARIDAEBaeolophus rufescens879,115.834PARIDAEBaeolophus griseus936,687.334PARIDAEBaeolophus griseus936,687.334PODNTOPHORIDAECallipepla californica959,438.994PARIDAEBaeolophus griseus936,687.334PARIDAECallipepla californica959,438.994POLIOPTILIDAEAmmodramus bairdii1,040,316.484	PARIDAE	Baeolophus wollweberi	437,230.08	3
InternationalFS0,050,02SMIMIDAEToxostoma benüirei486,047.023CORVIDAEAphelocoma ultramarina530,984,163PICIDAEMelanerpes uropygialis531,370.053EMBERIZIDAEAimophila abstivalis537,033.513ODONTOPHORIDAECallipepla gambelii563,372.013STRIGIDAEMicrathene whitneyi617,440.323VIREONIDAEVireo vicinitor721,610.064FRINGILLIDAELeucosticte atrata734,140.314SITTIDAESitta pusilla791,941.024STRIGIDAEBito cocidentalis796,937.334PICIDAEPicoides borealis828,931.324PICIDAEPicoides borealis828,931.324PICIDAECalypte costae810,120.024PICIDAEPicoides borealis828,931.324PICIDAEPicoides borealis828,931.324PICIDAEDiphysianus932,101.984PIASIANIDAECentrocercus urophasianus932,101.984PARIDAEBaeolophus griseus936,687.334DOONTOPHORIDAECallipepla californica959,438.994CULOPTILIDAEAmmodramus bairdii1,040,316.484	ODONTOPHORIDAE	Oreortyx pictus	447,287.38	3
CORVIDAEAphelocoma ultramarina530,984.163PICIDAEMelanerpes uropygialis531,370.053EMBERIZIDAEAimophila abstivalis537,033.513ODONTOPHORIDAECallipepla gambelii563,372.013STRIGIDAEMicrathene whitneyi617,440.323VIREONIDAEVireo vicinitor721,610.064FRINGILLIDAELeucosticte atrata734,140.314SITTIDAESitta pusilla791,941.024STRIGIDAEStrix occidentalis796,937,334IROCHILIDAECalypte costae810,120.024PICIDAEPicoides borealis828,931.324PARIDAEBaeolophus rufescens879,115.834PARIDAEBaeolophus griseus936,687.334DONTOPHORIDAECalippela californica959,438.994PARIDAEBaeolophus griseus936,687.334PONTOPHORIDAECalipopia californica959,438.994PARIDAEPanodramus balirdii1,037,495.494POLOPTILIDAEPolioptila melanura1,040,316.484	CORVIDAE	Corvus caurinus	480,633.52	. 3
PICIDAEMelanerpes uropygialis531,370.053EMBERIZIDAEAimophila abstivalis537,033.513CODONTOPHORIDAECallipepla gambelii563,372.013STRIGIDAEMicrathene whitneyi617,440.323VIREONIDAEVireo vicinitor721,610.064FRINGILLIDAELeucosticte atrata734,140.314STRIGIDAESitta pusilia791,941.024STRIGIDAEStrix occidentalis796,937.334FRINGILLIDAECalypte costae810,120.024PICIDAEPicoldes borealis828,931.324PARIDAEBaeolophus rufescens879,115.834CHILIDAECalypte anna887,002.664PHASIANIDAECentrocercus urophasianus932,101.984ODONTOPHORIDAECalippela californica959,438.994PARIDAEBaeolophus griseus936,687.334POLOPTILIDAECalippela californica959,438.994POLOPTILIDAEPoloptila melanura1,040,316.484	MIMIDAE	Toxostoma bendirei	486,047.02	3
EMBERIZIDAEAimophila abstivalis537,033.513ODONTOPHORIDAECallipepla gambelii563,372.013STRIGIDAEMicrathene whitneyi617,440.323VIREONIDAEVireo vicinitor721,610.064FRINGILLIDAELeucosticte atrata734,140.314SITTIDAESitta pusilla791,941.024STRIGIDAEStrix occidentalis796,937.334STRIGIDAECalypte costae810,120.024PICIDAEPicoides borealis828,931.324PICIDAEBaeolophus rufescens879,115.834PIASIANIDAECalypte anna887,002.664PHASIANIDAECentrocercus urophasianus932,101.984PONTOPHORIDAECalippla californica959,438.994PONTOPHORIDAECalippla californica959,438.994PONTOPHORIDAECalippla californica959,438.994POLIOPTILIDAEPolioptila melanura1,040,316.484	CORVIDAE	Aphelocoma ultramarina	530,984.16	3
ODONTOPHORIDAECallipepla gambelii563,372.013STRIGIDAEMicrathene whitneyi617,440.323VIREONIDAEVireo vicinitor721,610.064FRINGILLIDAELeucosticte atrata734,140.314SITTIDAESitta pusilla791,941.024SITTIGIDAESitta pusilla796,937,334STRIGIDAEStrix occidentalis796,937,334FRINGILLIDAECalypte costae810,120.024PICIDAEPicoides borealis828,931.324PARIDAEBaeolophus rufescens879,115.834PARIDAECalypte anna887,002.664PHASIANIDAECentrocercus urophasianus932,101.984PARIDAEBaeolophus griseus936,687.334DOONTOPHORIDAECallipepla californica959,438.994PARIDAEPoliophila melanura1,040,316.484	PICIDAE	Melanerpes uropygialis	531,370.05	3
STRIGIDAEMicrathene whitneyi617,440.323STRIGIDAEVireo vicinitor721,610.064FRINGILLIDAELeucosticte atrata734,140.314SITTIDAESitta pusilla791,941.024STRIGIDAESitta pusilla791,941.024STRIGIDAESitta pusilla796,937.334STRIGIDAEStrix occidentalis796,937.334FROCHILIDAECalypte costae810,120.024PICIDAEPicoides borealis828,931.324PARIDAEBaeolophus rufescens879,115.834PARIDAECalypte anna887,002.664PHASIANIDAECentrocercus urophasianus932,101.984PARIDAEBaeolophus griseus936,687.334DOONTOPHORIDAECallipepla californica959,438.994POLIOPTILIDAEPolioptila melanura1,040,316.484	EMBERIZIDAE	Aimophila abstivalis	537,033.51	3
VIREONIDAEVireo vicinitor721,610.064FRINGILLIDAELeucosticte atrata734,140.314SITTIDAESitta pusilla791,941.024STRIGIDAEStrix occidentalis796,937.334TROCHILIDAECalypte costae810,120.024PICIDAEPicoides borealis828,931.324PARIDAEBaeolophus rufescens879,115.834PARIDAECalypte anna887,002.664PHASIANIDAECentrocercus urophasianus932,101.984PARIDAEBaeolophus griseus936,687.334PODONTOPHORIDAECallipepla californica959,438.994POLIOPTILIDAEPolioptila melanura1,040,316.484	ODONTOPHORIDAE	Callipepla gambelii	563,372.01	3
FRINGILLIDAELeucosticte atrata734,140.314SITTIDAESitta pusilla791,941.024SITTIDAESitta pusilla796,937.334STRIGIDAEStrix occidentalis796,937.334FROCHILIDAECalypte costae810,120.024PICIDAEPicoldes borealis828,931.324PARIDAEBaeolophus rufescens879,115.834COCHILIDAECalypte anna887,002.664PARIDAECantrocercus urophasianus932,101.984PARIDAEBaeolophus griseus936,687.334DONTOPHORIDAECallipepla californica959,438.994POLIOPTILIDAEPolioptila melanura1,040,316.484	STRIGIDAE	Micrathene whitneyi	617,440.32	3
SITTIDAESitta pusilla791,941.024SITTIDAESitta pusilla791,941.024STRIGIDAEStrix occidentalis796,937.334TROCHILIDAECalypte costae810,120.024PICIDAEPicoides borealis828,931.324PARIDAEBaeolophus rufescens879,115.834PARIDAECalypte anna887,002.664PHASIANIDAECentrocercus urophasianus932,101.984PARIDAEBaeolophus griseus936,687.334PARIDAECallipepla californica959,438.994PARIDAEAmmodramus bairdii1,037,495.494	VIREONIDAE	Vireo vicinitor	721,610.06	4
STRIGIDAEStrix occidentalis796,937.334STRIGIDAEStrix occidentalis796,937.334IROCHILIDAECalypte costae810,120.024PICIDAEPicoides borealis828,931.324PARIDAEBaeolophus rufescens879,115.834FROCHILIDAECalypte anna887,002.664PHASIANIDAECentrocercus urophasianus932,101.984PARIDAEBaeolophus griseus936,687.334PARIDAEBaeolophus griseus936,687.334PARIDAECallipepla californica959,438.994PARIDAEAmmodramus bairdii1,037,495.494POLIOPTILIDAEPolioptila melanura1,040,316.484	FRINGILLIDAE	Leucosticte atrata	734,140.31	4
TROCHILIDAECalypte costae810,120.024PICIDAEPicoides borealis828,931.324PARIDAEBaeolophus rufescens879,115.834FROCHILIDAECalypte anna887,002.664PHASIANIDAECentrocercus urophasianus932,101.984PARIDAEBaeolophus griseus936,687.334PARIDAECallipepla californica959,438.994PARIDAECallipepla californica959,438.994POLIOPTILIDAEPolioptila melanura1,040,316.484	SITTIDAE	Sitta pusilla	791,941.02	4
PICIDAEPicoides borealis828,931.324PARIDAEBaeolophus rufescens879,115.834PARIDAECalypte anna887,002.664PHASIANIDAECentrocercus urophasianus932,101.984PARIDAEBaeolophus griseus936,687.334PARIDAEBaeolophus griseus936,687.334PARIDAECallipepla californica959,438.994PARIDAECallipepla californica959,438.994PARIDAEPolioptila melanura1,040,316.484	STRIGIDAE	Strix occidentalis	796,937.33	4
PARIDAEBaeolophus rufescens879,115.83.4PARIDAECalypte anna887,002.664PHASIANIDAECentrocercus urophasianus932,101.984PARIDAEBaeolophus griseus936,687.334PARIDAEBaeolophus griseus936,687.334PARIDAECallipepla californica959,438.994PARIZIDAEAmmodramus bairdii1,037,495.494POLIOPTILIDAEPolioptila melanura1,040,316.484	TROCHILIDAE	Calypte costae	810,120.02	4
Interruption forestantsOTS,111.3.3.4IROCHILIDAECalypte anna887,002.664PHASIANIDAECentrocercus urophasianus932,101.984PARIDAEBaeolophus griseus936,687.334DOONTOPHORIDAECallipepla californica959,438.994EMBERIZIDAEAmmodramus bairdii1,037,495.494POLIOPTILIDAEPolioptila melanura1,040,316.484	PICIDAE	Picoides borealis	828,931.32	4
PHASIANIDAE Centrocercus urophasianus 932,101.98 4 PARIDAE Baeolophus griseus 936,687.33 4 DODONTOPHORIDAE Callipepla californica 959,438.99 4 EMBERIZIDAE Ammodramus bairdii 1,037,495.49 4 POLIOPTILIDAE Polioptila melanura 1,040,316.48 4	PARIDAE	Baeolophus rufescens	879,115.83.	4
PARIDAE Baeolophus griseus 936,687.33 4 DDONTOPHORIDAE Callipepla californica 959,438.99 4 EMBERIZIDAE Ammodramus bairdii 1,037,495.49 4 POLIOPTILIDAE Polioptila melanura 1,040,316.48 4	(ROCHILIDAE	Calypte anna	887,002.66	4
DDONTOPHORIDAE Callipepla californica 959,438.99 4 EMBERIZIDAE Ammodramus bairdii 1,037,495.49 4 POLIOPTILIDAE Polioptila melanura 1,040,316.48 4	PHASIANIDAE	Centrocercus urophasianus	932,101.98	4
EMBERIZIDAE Ammodramus bairdii 1,037,495.49 4 POLIOPTILIDAE Polioptila melanura 1,040,316.48 4	PARIDAE	Baeolophus griseus	936,687.33	4
POLIOPTILIDAE Polioptila melanura 1,040,316.48 4	DONTOPHORIDAE	Callipepla californica	959,438.99	4
	EMBERIZIDAE	Ammodramus bairdii	1,037,495.49	4
PICIDAE Sphyrapicus ruber 1,060,857.59 4	POLIOPTILIDAE	Polioptila melanura	1,040,316.48	4
	PICIDAE	Sphyrapicus ruber	1,060,857.59	4

FAMILY	SPECIES	GEOGRAPHICAL RANGE SIZE (KM ²)	AGGREGATION NUMBER
MIMIDAE	Toxostoma crissale	1,079,588.16	4
EMŖERIZIDAE	Calcarius mccownii	1,252,168.22	5
CORVIDAE	Gymnorhinus cyanocephalus	1,266,450.19	5
EMBERIZIDAE	Ammodramus henslowii	1,303,476.69	5
CORVIDAE	Corvus ossifragus	1,309,994.28	5
PHASIANIDAE	Lagopus leucurus	1,335,954.86	5
EMBERIZIDAE	Ammodramus nelsoni	1,358,267.16	5
EMBERIZIDAE	Pipilo fuscus	1,369,034.07	5
SITTIDAE	Sitta pygmaea	1,370,127.16	5
EMBERIZIDAE	Aimophila ruficeps	1,440,839.10	5
CORVIDAE	Corvus cryptoleucus	1,502,145.14	5
MIMIDAE	Toxostoma curvirostre	1,624,583.52	6
REMIZIDAE	Auriparus flaviceps	1,628,039.49	6
PICIDAE	Sphyrapicus thyroideus	1,720,874.50	6
MOTACILLIDAE	Anthus spraguelii	1,729,808.87	6
TROGLODYTIDAE	Campylorhynchus brunneicapillus	1,748,492.01	6
EMBERIZIDAE	Aimophila cassinii	1,767,703.44	6
CORVIDAE	Aphelocoma californica	1,811,037.86	б
EMBERIZIDAE	Calcarius pictus	1,900,925.60	6
EMBERIZIDAE	Amphispiza belli	1,932,016.92	6
CORVIDAE	Nucifraga columbiana	1,933,806.13	б
FRINGILLIDAE	Carpodacus cassínii	2,067,875.81	6
PICIDAE	Melanerpes lewis	2,086,872.01	6

.

APPENDIX 7.1 Continued

FAMILY	SPECIES	GEOGRAPHICAL Range Size (KM²)	AGGREGATION NUMBER
EMBERIZIDAE	Zonotrichia querula	2,149,974.72	6
EMBERIZIDAÈ	Calcarius ornatus	2,163,255.55	6
PARIDAE	Poecile carolinensis	2,199,436.03	6
PHASIANIDAE	Derdragapus obscurus	2,330,278.15	6
PARIDAE	Poecile gambeli	2,343,351.63	6
TURDIDAE	Slalla mexicana	2,512,742.54	6
TROCHILIDAE	Archilochus alexandri	2,570,849.52	6
EMBERIZIDAE	Zonotrichia atricapilla	2,637,925.13	6
EMBERIZIDAE	Dendroica pinus	2,735,331.67	6
MIMIDAE	Oreoscoptes montanus	2,775,922.45	6
EMBERIZIDAE	Calamospiza melanocorys	2,807,039.10	6
EMBERIZIDAE	Pipilo chlorurus	2,985,712.21	6
PICIDAE	Picoides scalaris	3,008,385.58	6
TROGLODYTIDAE	Catherpes mexicanus	3,059,461.11	6
TURDIDAE	Ixoreus häevius	3,182,726.29	6
STRIGIDAE	Otus kennicotis	3,196,894.34	6
EMBERIZIDAE	Spizella breweri	3,399,900.45	6
EMBERIZIDAE	Ammodramus leconteii	3,439,489.14	6
PICIDAE	Melanerpes carolinus	3,451,570.76	6
PICIDAE	Sphyrapicus nuchalis	3,523,635.80	6
PARIDAE	Baeolophus bicolor	3,621,328.15	6
FRINGILLIDAE	Leucosticte tephrocotis	3,748,610.12	6
ACCIPITRIDAE	Buteo regalis	3,944,000.16	6
TROGLODYTIDAE	Thryothorus bewickii	4,173,406.16	6

APPENDIX 7.1 Continued

FAMILY	SPECIES	GEOGRAPHICAL RANGE SIZE (KM²)	AGGREGATION NUMBER
CAPRIMULGIDAE	Phalaenoptilus nuttallii	4,224,045.37	6
PHASIANIDAE	Tympanuchus phasianellus	4,228,093.52	. 6
FALCONIDAE	Falco mexicanus	4,231,703.52	6
EMBERIZIDAE	Spizella pusilla	4,306,910.57	6
TURDIDAE	Sialia cucorroides	4,335,942.32	• 6
PICIDAE	Melanerpes erythrocephalus	4,454,873.42	6
STRIGIDAE	Otus asio	4,980,413.52	б
MIMIDAE	Toxostoma rufum	5,475,720.86	77
PICIDAE	Picoldes arcticus	5,535,010.53	7
PHASIANIDAE	Meleagris gallipavo	5,745,221.01	7
TURDIDAE	Myadestes townsendi	5,981,241.13	7
EMBERIZIDAE	Pipilo maculatus	6,054,404.84	7
STRIGIDAE	Strix varia	6,345,958.06	
PARIDAE	Poecile hudsonicus	6,680,823.14	7
PICIDAE	Dryocopus pileatus	6,966,758.31	7
FRINGILLIDAE	Coccothraustes vespertinus	6,999,336.80	7
CORVIDAE	Cyanocitta cristata	7,008,286.42	7
LANIIDAE	Lanius Iudovocianus	7,023,979.92	7
PHASIANIDAE	Bonasa umbellus	7,180,719.96	7
SITTIDAE	Sitta carolinensis	7,250,946.56	7
PHASIANIDAE	Dendragapus canadensis	7,378,870.52	7
STRIGIDAE	Aegolius acadicus	7,496,170.88	7
FRINGILLIDAE	Carpodacus purpureus	7,563,130.25	7
CORVIDAE	Perisoreus canadensis	8,139,837.84	7

APPENDIX 7.1 Continued

FAMILY	SPECIES	GEOGRAPHICAL RANGE SIZE (KM²)	AGGREGATION NUMBER
PARIDAE	Poecile atricapillus	8,321,408.04	7
EMBERIZIDAE	Quiscalus quiscala	8,362,835.65	7
TROGLODYTIDAE	Cistothorus palustris	8,577,547.55	7
EMBERIZIDAE	Euphagus carolinus	8,711,199.08	7
EMBERIZIDAE	Zonotrichia albicollis	8,780,431.01	7
EMBERIZIDAE	Passerella iliaca	9,419,367.36	7
EMBERIZIDAE	Spizella arborea	9,498,511.88	7
FRINGILLIDAE	Carduelis tristis	9,808,459.52	7
REGULIDAE	Regulus satrapa	10,668,588.22	7
CORVIDAE	Corvus brachyrhynchus	11,210,082.59	7
PICIDAE	Picoides pubescens	11,531,589.52	7
SITTIDAE	Sitta canadensis	11,722,684.16	7
EMBERIZIDAE	Melospiza melodia	12,248,430.24	7
EMBERIZIDAE	Zonotrichia leucophrys	12,390,931.26	7
FRINGILLIDAE	Carduelis pinus	13,028,008.42	7
ACCIPITRIDAE	Haliaethus leucocephalus	13,298,938.88	7
PICIDAE	Colaptes auratus	14,994,305.15	7
EMBERIZIDAE	Junco hyemalis	15,068,746.85	7

APPENDIX 7.2 North American Butterfly Species Included in the Study of Discontinuities in Geographical Range Size

ë

FAMILY	SPECIES	GEOGRAPHICAL RANGE SIZE (KM ²)	AGGREGATION NUMBER
PIERIDAE	Colias behrii	38,451.08	1
HESPERIIDAE	Agathymus evansi	41,385.10	1
HESPERIIDAE	Polites mardon	46,403.81	1
LYCAENIDAE	Lycaena hermes	49,569.46	1
LYCAENIDAE	Plebejus emigdionis	50,495.99	1
HESPERIIDAE	Hesperia miriamae	51,036.47	. 1
LYCAENIDAE	Callophrys dumetorum	51,499.74	1
NYMPHALIDAE	Chlosyne chinatiensis	54,588.18	1
LYCAENIDAE	Plebejus neurona	57,290.56	1
HESPERIIDAE	Amblyscirtes unnamed	66,478.67	1
NYMPHALIDAE	Speyeria adiaste	68,872.21	. 1
HESPERIIDAE	Atrytonopsis cestus	77,133.79	1
HESPERIIDAE	Thorybes diversus	84,005.57	. 1
LYCAENIDAE	Fixsenia polingi	87,943.33	1
HESPERIIDAE	Celotes limpia	93,579.73	1
HESPERIIDAE	Agathymus stephensi	107,940.98	1
HESPERIIDAE	Agathymus remingtoni	120,140.32	1
HESPERIIDAE	Agathymus alliae	134,501.56	1
NYMPHALIDAE	Phyciodes orsels	165,154.33	2
HESPERIIDAE	Agathymus polingi	168,011.14	2
LYCAENIDAE	Calephelis wrighti	171,871.69	2
NYMPHALIDAE	Coenonympha haydenii	172,798.22	2
LYCAENIDAE	Philotes sonorensis	183,530.55	2
·····			

APPENDIX 7.2 Continued

FAMILY	SPECIES	GEOGRAPHICAL RANGE SIZE (KM²)	AGGREGATION NUMBER
NYMPHALIDAE	Boloria natazhati	193,336.34	2
HESPERIIDAE	Agathymus neumoegeni	195,266.62	2
HESPERIIDAE	Atrytonopsis lunus	195,652.67	2
HESPERIIDAE	Atrytonopsis deva	195,961.52	2
HESPERIIDAE	Piruna polingii	197,351.32	2
HESPERIIDAE	Problema bulenta	201,057.44	2
HESPERIIDAE	Amblyscirtes fimbriata	220,514.62	2
NYMPHALIDAE	Speyeria diana	231,710.21	2
HESPERIIDAE	Amblyscirtes nereus	240,203.42	2
HESPERIIDAE	Euphyes arpa	244,295.60	2
NYMPHALIDAE	Chlosyne hoffmanni	251,939.49	2
NYMPHALIDAE	Boloria kriemhild	259,351.75	2
NYMPHALIDAE	Erebia vidleri	259,660.59	2
HESPERIIDAE	Euphyes berryi	266,609.58	2
HESPERIIDAE	Agathymus aryxna	273,249.73	2
PIERIDAE	Colias eurydice	279,117.77	2
HESPERIIDAE	Pyrgus xanthus	285,912.33	2
LYCAENIDAE	Satyrium auretorum	286,761.65	2
LYCAENIDAE	Philotiella speciosa	292,398.06	2
LYCAENIDAE	Callophrys lanoraieensis	292,475.27	2
HESPERIIDAE	Hesperia lindseyi	296,953.51	2
HESPERIIDAE	Atrytonopsis pittacus	306,990.94	2
HESPERIIDAE	Stinga morrisoni	309,538.90	2
HECOEDHDAE	Maasthumus ursus	312.472.92	2

APPENDIX 7.2 Continued

 t

FAMILY	SPECIES	GEOGRAPHICAL Range Size (KM²)	AGGREGATION NUMBER
LYCAENIDAE	Euphilotes spaldingi	314,557.61	2
HESPERIIDAE	Hesperia columbia	320,657.28	2
HESPERIIDAE	Amblyscirtes phylace	327,065.80	2
NYMPHALIDAE	Chlosyne californica	328,687.23	2
HESPERIIDAE	Megathymus cofaqui	333,242.68	2
HESPERIIDAE	Nastra neamathla	338,570.24	2
NYMPHALIDAE	Euphydryas gillettii	338,879.08	2
HESPERIIDAE	Ochlodes agricola	340,500.51	2
PAPILIONIDAE	Papilio brevicauda	346,831.81	2
NYMPHALIDAE	Oeneis nevadensis	352,854.27	2
HESPERIIDAE	Hesperia dacotae	356,405.98	2
PIERIDAE	Anthocharis lanceolata	357,255.30	2
HESPERIIDAE	Agathymus mariae	358,876.73	2
HESPERIIDAE	Amblyscirtes cassus	370,844.43	2
LYCAENIDAE	Satyrium tetra	381,267.92	2
HESPERIIDAE	Cogia outis	381,267.92	2
HESPERIIDAE	Amblyscirtes texanae	383,815.88	2
LYCAENIDAE	Lycaena gorgon	384,510.78	2
LYCAENIDAE	Callophrys johnsoni	395,860.80	2
HESPERIIDAE	Poanes aaroni	397,636.65	2
HESPERIIDAE	Atrytonopsis python	405,203.33	2
PIERIDAE	Colias occidentalis	412,692.80	2
LYCAENIDAE	Callophrys hesseli	413,850.96	2

APPENDIX 7.2 Continued

FAMILY	SPECIES	GEOGRAPHICAL RANGE SIZE (KM ²)	AGGREGATION NUMBER
LYCAENIDAE	Habrodais grunus	426,976.83	2
HESPERIIDAE	Hesperia woodgatei	456,317.01	2
HESPERIIDAE	Oligoria maculata	457,089.12	2
LYCAENIDAE	Callophrys fotis	467,126.55	2
LYCAENIDAE	Apodemia nais	475,774.18	2
HESPERIIDAE	Amblyscirtes reversa	497,624.90	2
HESPERIIDAE	Zestusa dorus	503,184.09	2
HESPERIIDAE	Oarisma powesheik	504,959.94	2
LYCAENIDAE	Celastrina nigra	508,588.86	2
HESPERIIDAE	Euphyes pilatka	510,827.98	2
LYCAENIDAE	Calephelis borealis	512,603.83	2
LYCAENIDAE	Plebejus lupini	547,966.47	2
HESPERIIDAE	Ochlodes yuma	555,455.93	2
HESPERIIDAE	Atrytonopsis vierecki	574,141.00	2
HESPERIIDAE	Panoquina panoquin	575,685.22	2
NYMPHALIDAE	Speyeria nokomis	595,628.44	2
HESPERIIDAE	Piruna pirus	598,230.83	2
HESPERIIDAE	Amblyscirtes carolina	607,032.88	2
PIERIDAE	Anthocharis cethura	665,636.03	3
HESPERIIDAE	Euphyes dukesi	762,458.63	3
NYMPHALIDAE	Oeneis alberta	764,852.17	3
LYCAENIDAE	Calephelis muticum	806,237.26	.3
LYCAENIDAE	Euphilotes rita	808,476.38	3
	Amhlvscirtes simius	810,406.66	3

APPENDIX 7.2 Continued

r

FAMILY	SPECIES	GEOGRAPHICAL RANGE SIZE (KM ²)	AGGREGATION
NYMPHALIDAE	Cercyonis meadii	828,010.76	3
LYCAENIDAE	Calephelis virginiensis	829,014.51	3
LYCAENIDAE	Ministrymon leda	855/883.94	3
LYCAENIDAE	Callophrys mossii	887,849.29	3
PAPILIONIDAE	Papilio palamedes	896,651.34	3
LYCAENIDAE	Satyrium kingi	918,965.32	3
HESPERIIDAE	Systasea zampa	957,339.19	3
LYCAENIDAE	Satyrium fuliginosum	961,122.53	3
HESPERIIDAE	Amblyscirtes alternata	990,694.34	3
HESPERIIDAE	Polites sonora	992,624.62	3
YCAENIDAE	Lycaena arota	· 1,001,658.30	3
HESPERIIDAE	Megathymus streckeri	1,003,820.21	3
HESPERIIDAE	Hesperia attalus	1,004,283.48	. 3
LYCAENIDAE	Phaeostrymon alcestis	1,040,109.38	3
HESPERIIDAE	Hesperia meskei	1,040,418.23	3
LYCAENIDAE	Lycaena cupresus	1,048,525.38	3
PIERIDAE	Artogeia virginiensis	1,068,368.61	3
HESPERIIDAE	Yvretta rhesus	1,075,085.96	3
HESPERIIDAE	Poanes massasoit	1,112,919.35	3
HESPERIIDAE	Amblyscirtes eos	1,121,721.41	3
HESPERIIDAE	Poanes yehl	1,134,152.38	3
NYMPHALIDAE	Phyciodes pallida	1,150,135.06	3
HESPERIIDAE	Pholisora libya	1,150,984.38	3

APPENDIX 7.2 Continued

FAMILY	SPECIES	GEOGRAPHICAL RANGE SIZE (KM ²)	AGGREGATION NUMBER
NYMPHALIDAE	Speyęria edwardsii	1,152,528.60	3
HESPERIIDAE	Amblyscirtes aenus	1,169,206.17	3
NYMPHALIDAE	Speyeria egleis	1,190,902.46	3
HESPERIIDAE	Polites draco	1,238,232.81	3
HESPERIIDAE	Euphyes conspicua	1,240,626.35	3
NYMPHALIDAE	Neonympha areolata	1,258,076.03	3
LYCAENIDAE	Lycaena nivalis	1,264,561.76	3
NYMPHALIDAE	Boloria epithore	1,273,827.08	3
NYMPHALIDAE	Erebia magdalena	1,312,200.95	3
HESPERIIDAE	Erynnis telemachus	1,341,772.76	3
PAPILIONIDAE	Parnassius clodius	1,353,045.56	3
HESPERIIDAE	Erynnis lucilius	1,353,894.89	3
NYMPHALIDAE	Lethe portlandia	1,377,984.72	3
HESPERIIDAE	Amblyscirtes oslari	1,399,449.38	3
LYCAENIDAE	Satyrium californica	1,411,725.92	3
LYCAENIDAE	Satyrium behrii	1,415,895.32	3
HESPERIIDAE	Hesperopsis alpheus	1,416,744.64	3
HESPERIIDAE	Pyrgus ruralis	1,417,130.69	3
HESPERIIDAE	Amblyscirtes aesculapius	1,423,925.26	3
NYMPHALIDAE	Limenitis lorquini	1,439,599.10	3
HESPERIIDAE	Hesperia viridis	1,443,305.22	3
NYMPHALIDAE	Chiosyne palla	1,451,952.86	3
HESPERIIDAE	Problema byssus	1,475,347.79	3
31E01 211051 1			

APPENDIX 7.2 Continued

¢

FAMILY	SPECIES	GEOGRAPHICAL RANGE SIZE (KM²)	AGGREGATION NUMBER
NYMPHALIDAE	Lethe creola	1,477,200.85	3
LYCAENIDAE	Callophrys irus	1,506,541.03	3
LYCAENIDAE	Plebejus shasta	1,555,570.02	3
NYMPHALIDAE	Speyeria hydaspe	1,557,809.14	3
NYMPHALIDAE	Chlosyne leanira	1,614,713.64	3
LYCAENIDAE	Satyrium caryaevorus	1,617,338.82	3
LYCAENIDAE	Satyrium saepium	1,618,574.19	3
HESPERIIDAE	Hesperia ottoe	1,626,218.08	3
NYMPHALIDAE	Cercyonis sthenele	1,693,237.23	3
HESPERIIDAE	Hesperia pahaska	· 1,697,252.20	3
LYCAENIDAE	Euphilote enoptes	1,727,055.65	3
NYMPHALIDAE	Speyeria coronis	1,734,004.64	3
HESPERIIDAE	Thorybes confusis	1,755,546.51	3
HESPERIIDAE	Polites sabuleti	1,755,932.56	3
HESPERIIDAE	Hesperia sassacus	1,756,241.41	3
LYCAENIDAE	Lycaena heteronea	1,782,801.99	3
PAPILIONIDAE	Papilio indra	1,794,229.22	3
LYCAENIDAE	Callophrys sheridanii	1,806,042.50	3
LYCAENIDAE	Euphilotes battoides	1,816,697.62	3
HESPERIIDAE	Pyrgus scriptura	1,817,469.73	3
HESPERIIDAE	Hesperia nevada	1,834,610.57	3
NYMPHALIDAE	Limenitis weidemeyerii	1,912,593.68	3
LYCAENIDAE	Lycaena mariposa	1,923,943.70	3

DISCONTINUITIES IN THE GEOGRAPHICAL RANGE SIZE 131

APPENDIX 7.2 Continued

FAMILY	SPECIES	GEOGRAPHICAL RANGE SIZE (KM²)	AGGREGATION NUMBER
LYCAENIDAE	Calycopis cecrops	1,926,954.93	3
NYMPHALIDAE	Chlosyne harrisii	1,931,896.43	3
HESPERIIDAE	Atrytone arogos	1,945,639.99	3
NYMPHALIDAE	Neominois ridingsii	1,971,814.52	3
LYCAENIDAE	Lycaena rubidus	1,978,145.82	3
NYMPHALIDAE	Euphydryas editha	1,981,774.74	3
HESPERIIDAE	Euphyes bimacula	2,006,791.10	3
LYCAENIDAE	Glaucopsyche piasus	2,029,259.50	3
LYCAENIDAE	Satyrium sylvinus	2,081,531.35	3
PAPILIONIDAE	Papilio eurymedon	2,081,608.56	3
PIERIDAE	Pieris chlorodice	2,093,421.84	3
HESPERIIDAE	Hesperia juba	2,110,331.05	3
NYMPHALIDAE	Oeneis uhleri	2,137,200.48	3
LYCAENIDAE	Callophrys affinis	2;139,439.60	3
PIERIDAE	Anthocharis midea	2,146,465.80	. 3
NYMPHALIDAE	Speyeria idalia	2,166,772.29	3
HESPERIIDAE	Poanes viator	2,168,934.20	3
PIERIDAE	Euchloe hyantis	2,176,269.25	3
PAPILIONIDAE	Eurytides marcellus	2,185,225.72	3
NYMPHALIDAE	Nymphalis californica	2,209,933.24	3
NYMPHALIDAE	Oeneis macounii	2,228,155.04	3 ·
HESPERIIDAE	Ochlodes sylvanoides	2,274,404.43	3
HESPERIIDAE	Hesperia metea	2,297,799.36	3
PIERIDAE	Neophasia menapia	2,364,123.61	3

APPENDIX 7.2 Continued

£

FAMILY	SPECIES	GEOGRAPHICAL Range Size (KM²)	AGGREGATION NUMBER
HESPERIIDAE	Nastra Iherminier	2,390,915.83	3
NYMPHALIDAE	Lethe appalachia	2,395,394.06	3
NYMPHALIDAE	Cercyonis oetus	2,410,913.48	3
HESPERIIDAE	Staphylus hayhurstii	2,428,826.43	3
LYCAENIDAE	Lycaena epixanthes	2,469,671.05	3
NYMPHALIDAE	Speyeria callippe	2,534,991.55	3
NYMPHALIDAE	Boloria napaea	2,545,569.46	3
LYCAENIDAE	Plebejus icarioides	2,691,498.25	4
HESPERIIDAE	Achalarus lyciades	2,697,983.97	4
NYMPHALIDAE	Chlosyne gabbii	2,758,440.19	4
NYMPHALIDAE	Euphydryas phaeton	2,772,106.53	4
HESPERIIDAE	Pompeius verna	2,812,565.10	4
LYCAENIDAE	Satyrium edwardsii	2,840,669.90	4
PAPILIONIDAE	Papilio troius	2,849,780.80	4
HESPERIIDAE	Euphyes dion	2,911,240.76	4
HESPERIIDAE	Erynnis baptisiae	3,022,579.02	5
LYCAENIDAE	Fixșenia favonius	3,029,528.01	5
LYCAENIDAE	Apodemia mormo	3,034,392.30	5
PIERIDAE	Euchloe creusa	3,037,866.80	5
HESPERIIDAE	Erynnis martialis	3,039,333.80	5
HESPERIIDAE	Amblyscirtes hegon	3,083,189.65	6
PIERIDAE	Colias pelidne	3,116,930.86	6
HESPERIIDAE	Poanes zabulon	3,189,045.93	6

APPENDIX 7.2 Continued

FAMILY	SPECIES	GEOGRAPHICAL RANGE SIZE (KM²)	AGGREGATION NUMBER
PIERIDAE	Euchloe olympia	3,197,230.30	6
HESPERIIDAE	Thorybes bathyllus	3,251,278.00	6
HESPERIIDAE	Hesperia leonardus	3,314,668.23	6
HESPERIIDAE	Erynnis horatius	3,347,328.48	6
LYCAENIDAE	Satyrium acadica	3,351,034.61	6
PAPILIONIDAE	Papilio zelicaon	3,365,859.12	6
NYMPHALIDAE	Speyeria mormonia	3,441,989.17	, 6
PIERIDAE	Anthocharis sara	3,475,035.48	6
PAPILIONIDAE	Parnassius phoebus	3,490,091.62	6
HESPERIIDAE	Polites origenes	3,512,328.39	6
NYMPHALIDAE	Phyciodes batesii	3,557,419.61	6
LYCAENIDAE	Callophrys henrici	3,620,809.85	6
HESPERIIDAE	Atrytonopsis hianna	3,699,951.12	6
LYCAENIDAE	Plebejus optilete	3,738,633.83	6
NYMPHALIDAE	Lethe anthedon	3,760,175.70	6
LYCAENIDAE	Lycaena xanthoides	3,779,246.82	6
NYMPHALIDAE	Euphydryas chalcedona	3,814,532.24	6.
NYMPHALIDAE	Erebia epipsodea	3,858,156.46	6
NYMPHALIDAE	Lethe eurydice	3,943,320.19	6
LYCAENIDAE	Feniseca tarquinius	3,966,637.91	6
PIERIDAE	Pieris sisymbrii	3,979,300.52	6
LYCAENIDAE	Lycaena dorcas	4,197,344.38	6
NYMPHALIDAE	Chlosyne gorgone	4,217,959.72	6
NYMPHALIDAE	Polygonia comma	4,430,212.76	6

DISCONTINUITIES IN THE GEOGRAPHICAL RANGE SIZE 133

APPENDIX 7.2 Continued

6

FAMILY	SPECIES	GEOGRAPHICAL Range Size (KM²)	AGGREGATION NUMBER
LYCAENIDAE	Satyrium calanus	4,434,613.79	6
HESPERIIDAE	Polites mystic	4,515,608.12	6
LYCAENIDAE	Lycaena hyllus	4,553,441.51	6
HESPERIIDAE	Poanes hobomok	4,652,039.96	6
LYCAENIDAE	Callophrys niphon	4,689,718.93	6
NYMPHALIDAE	Megisto cymela	4,714,580.87	6
PIERIDAE	Colias alexandra	4,829,393.63	6
LYCAENIDAE	Plebejus melissa	4,838,041.26	6
HESPERIIDAE	Ancyloxcypha numitor	4,944,438.02	6
PIERIDAE	Colias Interior	4,988,448.29	6
PIERIDAE	Colias scudderii	5,016,398.67	6
NYMPHALIDAE	Speyeria aphrodite	5,018,406.16	6
NYMPHALIDAE	Oeneis polyxenes	5,038,017.75	6
PIERIDAE	Colias nastes	5,101,562.40	6
NYMPHALIDAE	Chlosyne nycteis	5,216,375.16	6
LYCAENIDAE	Callophrys eryphron	5,262,624.55	6
LYCAENIDAE	Callophrys polios	5,484,451.75	6
PIERIDAE	Euchloe ausonides	5,741,873.23	6
NYMPHALIDAE	Oeneis chryxus	5,836,919.97	6
LYCAENIDAE	Satyrlum lyparops	5,841,707.05	6
NYMPHALIDAE	Speyeria cybele	5,855,450.61	6
NYMPHALIDAE	Polygonia satyrus	6,040,062.11	6
HESPERIIDAE	Erynnis persius	6,070,946.51	6

APPENDIX 7.2 Continued

FAMILY	SPECIES	GEOGRAPHICAL RANGE SIZE (KM ²)	AGGREGATION NUMBER
LYCAENIDAE	Callophrys gryneus	6,241,505.61	. 6
NYMPHALIDAE	Boloria bellona	6,382,878.95	6
HESPERIIDAE	Polites peckius	6,509,041.72	6
NYMPHALIDAE	Phyciodes morpheus	6,637,829.67	6
NYMPHALIDAE	Polygonia progne	6,784,453.36	6
HESPERIIDAE	Epargyreus clarus	6,798,969.03	6
LYCAENIDAE	Harkenclenus titus	6,809,392.51	6.
HESPERIIDAE	Polites themistocles	6,919,649.82	6
HESPERIIDAE	Euphyes ruricola	6,924,900.17	6
PAPILIONIDAE	Papilio machaon	7,039,172.45	6
HESPERIIDAE	Erynnis icelus	7,145,337.57	6
PIERIDAE	Pieris callidice	7,351,645.37	6
HESPERIIDAE	Amblyscirtes vialis	7,359,134.83	6
HESPERIIDAE	Carterocephalus palaemon	7,433,643.45	6
NYMPHALIDAE	Speyeria atlantis	7,475,723.44	6
LYCAENIDAE	Plebejus idas	7,659,948.89	6
NYMPHALIDAE	Boloria eunomía	_7,802,094.34	6
LYCAENIDAE	Everes amyntula	7,814,756.94	6
NYMPHALIDAE	Polygonia faunus	7,827,805.60	6
LYCAENIDAE	Callophrys augustus	7,894,361.48	6
LYCAENIDAE	Lycaena helloides	7,961,843.90	6
LYCAENIDAE	Plebejus saepiolus	8,076,116.18	6
NYMPHALIDAE	Polygonia gracilis	8,097,271.99	6

APPENDIX 7.2 Continued

.

Ľ

	Contraction of the second s	
SPECIES	GEOGRAPHICAL RANGE SIZE (KM²)	AGGREGATION NUMBER
Cercyonis pegala	8,176,953.74	6
Aglais milberti	8,342,571.34	6
Boloria selene	9,092,676.20	6
Limenitis arthemis	9,094,606.48	6
Glaucopsyche lygdamus	10,210,305.43	7
Coenonympha tullia	10,403,332.93	7
Papilio glaucus	12,537,676.60	7
	Cercyonis pegala Aglais milberti Boloria selene Limenitis arthemis Glaucopsyche lygdamus Coenonympha tullia	RANGE SIZE (KM²)Cercyonis pegala8,176,953.74Aglais milberti8,342,571.34Boloria selene9,092,676.20Limenitis arthemis9,094,606.48Glaucopsyche lygdamus10,210,305.43Coeronympha tullia10,403,332.93